CENTRAL LANE METROPOLITAN PLANNING ORGANIZATION

REGIONAL TRANSPORTATION PLAN

LANE COUNCIL OF GOVERNMENTS
859 WILLAMETTE STREET, SUITE 500
EUGENE, OREGON 97401

DECEMBER 2011
REGIONAL TRANSPORTATION PLAN

The Central Lane Metropolitan Planning Organization (MPO) is the lead agency for Regional Transportation Planning for the Central Lane County Area. The MPO works with following jurisdictions and agencies in this capacity.

DECEMBER 2011

CENTRAL LANE METROPOLITAN PLANNING ORGANIZATION

Additional copies of this report may be obtained by contacting:

LANE COUNCIL OF GOVERMENTS 859 WILLAMETTE ST, SUITE 500 EUGENE, OR 97401
PHONE: 541-682-4405 EMAIL: mpo@lcog.org WEB: www.theMPO.org

Material in alternative formats can be arranged given sufficient notice by calling (541) 682-4283.
Context of Transportation Planning in the Central Lane Metropolitan Planning Organization (MPO) Area

There are four adopted transportation plans which cover the Central Lane MPO area, each representing a process to meet specific federal, state, or local requirements:

TransPlan
Adopted in July 2002, this plan covers the Eugene-Springfield area and was meant to address two separate requirements – federal and state requirements for an MPO Regional Transportation Plan, and state requirements for local agency Transportation System Plans. This plan has been adopted by the cities of Eugene and Springfield, Lane County, Lane Transit District and Lane Council of Governments. TransPlan continues to serve as the local agency Transportation System Plan (TSP) for Eugene and Springfield. Updates to the Eugene and Springfield TSPs are currently under way.

Central Lane MPO Regional Transportation Plan (this document)
The Central Lane MPO Regional Transportation Plan (RTP) represents a required update to the federal RTP. As noted in Chapter 1, the RTP is adopted by the Metropolitan Policy Committee. Additional information on the federal requirements for MPO areas is provided in Chapter 1.

Lane County Transportation System Plan (TSP)
Adopted in May, 2004, this plan covers Lane County and is meant to address state requirements for County TSPs.

City of Coburg TSP
Adopted in September, 1999, this plan covers the City of Coburg and is meant to address state requirements for city TSPs. An update to the Coburg TSP is currently under way.
Clarifying Language on Federal and State Plan Interaction

The 2011 update to the RTP extends the document’s planning horizon from 2031 to 2035. Thus, like the update adopted in 2007, the RTP has a planning horizon that goes beyond the planning horizons of the Eugene-Springfield Metropolitan Area General Plan (Metro Plan), the Eugene-Springfield Transportation System Plan (TransPlan) and the City of Coburg’s Comprehensive Plan (Coburg Plan). While this update to the RTP accommodates potential future development patterns beyond the planning horizons in the other plans, once the local jurisdictions provide policy and planning direction beyond those planning horizons, the RTP will be updated to reflect that new direction. Thus, even though the RTP has a planning horizon that extends beyond TransPlan, the Metro Plan, and the Coburg Plan, the local jurisdictions will provide the transportation planning and policy direction in accordance with state and local regulations beyond the current planning horizons in the Metro Plan, TransPlan and the Coburg Plan.

In recognition of the fact that the local jurisdictions direct transportation policy and planning, through adoption of their comprehensive plans and transportation system plans, rather than the MPC through adoption of the RTP, this RTP models a range of development patterns to address the 2035 planning horizon. The models used in the RTP are illustrative and are not intended to bind the local jurisdictions’ transportation policies and/or land use planning. While the RTP’s 2035 planning horizon is based on guidance from the local jurisdictions’ current comprehensive plans, the 2035 planning horizon is modeled only for the purposes of the RTP. The modeling in the RTP that is beyond the local jurisdictions’ planning horizons should not be interpreted as direction/analysis of future land use planning by the local jurisdictions.
Table of Contents

Chapter 1: Introduction ... 1-1
Chapter 2: Policy Element .. 2-1
Chapter 3: Plan Implementation 3-1
Chapter 4: Plan Performance and Implementation Monitoring ... 4-1

Appendices

A. Maps ... A-1
 Proposed Mixed Use Center Development Areas
 Financially Constrained Roadway Projects
 Illustrative Roadway Projects
 Federally Designated Roadway Functional Classification
 Bus Rapid Transit System
 Existing Lane Transit District System (within MPO)
 Financially Constrained Bikeway System Projects
 Priority Bikeway System Projects
 Illustrative Bikeway System Projects
 Goods Movement and Intermodal Facilities
 Regional Transportation Demand Management: point2point Solutions Regional Programs
 Congestion Management System: Percent Change in Congestion 2010-2035

B. Level of Service Standards B-1
C. List of Supporting Documents C-1
D. Glossary and Acronyms D-1
E. Executive Summary: Regional ITS Operations & Implementation Plan for The Eugene-Springfield Metropolitan Area ... G-1
F. Environmental Consultation Materials and Maps H-1
G. Congestion Management Process G-1
List of Figures

Figure 1 MPO Map 1-9
Figure 2 Context for the Regional Transportation Plan 1-10
Figure 3 Fundamental Components of Transportation Planning 1-10
Figure 4 Typical Process for Implementation of Roadway System Improvements 3-6
Figure 5 Coburg-Eugene-Springfield Metropolitan Area Geographic Districts Map 3-10
Figure 6 Key Factors That Affect Financial Constraint 3-37

List of Tables

Table 1a Financially Constrained Capital Investment Actions: Roadway Projects and
Table 1b Illustrative Capital Investment Actions: Roadway Projects 3-13
Table 2 Financially Constrained Capital Investment Actions: Transit Projects and
Table 2a Illustrative Capital Investment Actions: Transit Projects 3-21
Table 3a Financially Constrained Capital Investment Actions: Bicycle Projects and
Table 3b Illustrative Capital Investment Actions: Bicycle Projects 3-23
Table 4 RTP Costs, Revenues, and Strategies 3-45
Table 5 Constrained RTP Costs and Revenues 3-46
Table 6 Nodal Development Implementation and Integrated Land Use Transportation Plan Development Schedule 3-59
Table 7 Estimated Parking Supply 1995-2015 3-74
Table 8 Summary of Key Performance Measures 4-5
Table 9 Corridor Description and Estimated 2002 and 2021 Daily Traffic 4-13
Table 10 Areawide Performance Measures 4-14
CHAPTER ONE

INTRODUCTION
Chapter 1: Introduction

Table of Contents
The Importance of Transportation ... 1
Trends and Issues .. 2
Overview of the MPO’s Regional Transportation Plan .. 2
Participating Agencies and Geographic Area ... 5
Fundamental Components of Transportation Planning .. 5
The RTP Update Process .. 6
Plan Organization and Contents ... 8

The Importance of Transportation

Transportation is one of the key contributors to the Central Lane Metropolitan Planning Organization (CLMPO) region’s quality of life and economic viability. Generally, the need for transportation stems from our need to access goods, services, and other people within and beyond the region. The ease by which we are able to get from home to school, to a job, to medical services, to shopping and back again is dependent upon the efficiency and effectiveness of the region’s transportation system.

As the region grows, additional demands are put on the system. With limited resources, determining the best means for improving the system and meeting future demand is challenging. The framework for making decisions on the future of the region’s transportation system has become more complex in recent years. Federal, state, and local policy calls for consideration of a wide range of factors in the preparation of a regional transportation plan, including:

⇒ Identifying the means to reduce reliance on the automobile by increasing the transportation choices available in the region,
⇒ Consideration of the interrelationships among the region’s land use and transportation,
⇒ Consideration of the financial, environmental, and neighborhood impacts of future plans, and
⇒ Identifying strategies to maintain and improve the safety of the transportation system.

Ultimately, the most successful transportation plan will be one that enables us to minimize the time and resources required in the future to access the goods and services we need.
Trends and Issues

The region is anticipating significant population and employment growth. The population of the CLMPO area is expected to grow by 25 percent by 2035 from the 2010 base year. Employment in the region is expected to grow by 40 percent during that same period. Should land use patterns and travel behavior continue as they exist today, a forecast of trends from 2010 (the base year for much of the current data) to 2035 points to several issues:

- Congestion would rise dramatically, increasing the cost of travel and reducing the efficiency of the region’s roadway network. Congested miles of travel would increase from 4.3 percent of total miles traveled to 12 percent, a 182 percent increase. However, vehicle miles traveled per capita would go from 11.73 to 11.69, a slight decrease.

- One of the primary roles played by public agencies is in the provision of transportation system infrastructure. Without a balanced approach to the development of future improvements, little change will be made in the transportation choices available to the region and the proportion of drive alone auto trips would increase while the proportion of alternative modes use would decrease. The Regional Transportation Plan strives to achieve a balanced approach, and the proportion of drive alone auto trips is projected to decrease slightly from 2010 to 2035, from 43.9 percent to 43.6 percent.

- Shorter trip distance is one factor that contributes to making the use of alternative modes more attractive. The percentage of total trips less than one mile in length would increase by 7 percent.

Overview of the MPO’s Regional Transportation Plan

The Central Lane Metropolitan Planning Organization Regional Transportation Plan (RTP) guides regional transportation system planning and development in the CLMPO metropolitan area. The RTP includes provisions for meeting the transportation demand of residents over a 20-year planning horizon while addressing transportation issues and making changes that can contribute to improvements in the region’s quality of life and economic vitality.

The Metropolitan Policy Committee (MPC) adopts the RTP as the federal Regional Transportation Plan. Federal, state, regional, and local requirements comprise the regulatory framework that shapes the Eugene-Springfield region’s transportation planning process. The two most influential pieces of regulatory guidance are the federal Safe Accountable Flexible Efficient Transportation Equity Act – A Legacy for Users (SAFETEA-LU) and the Oregon Transportation Planning Rule (TPR). Urbanized areas with a population of 50,000 or more people are required by federal statute to have a regional transportation plan that demonstrates consideration of several factors, such as system preservation and efficiency, energy conservation, and congestion relief. The plan must also be in compliance with National Ambient Air Quality Standards and be constrained to financial resources reasonably expected to be available.

In compliance with provisions in SAFETEA-LU and the TPR, the RTP contains transportation policies and expected actions and is financially constrained to revenues reasonably expected to be available. The RTP includes demonstration of compliance with federal and state air quality
requirements, a description of the plan amendment process, and documentation of the plan update public involvement process.

The ongoing nature of regional transportation planning allows the RTP to be a dynamic plan of action for the future transportation system, rather than a static snapshot in time. The range of implementation actions and plan amendment and update processes ensure that the RTP will adapt to meet changing conditions within the region, as well as adapt to residents’ changing needs. The plan’s implementation and further refinement will continue through the collaborative efforts of citizens and organizations that own, operate, regulate, and use the transportation system.

The RTP is particularly important for guiding transportation public policy and investment decision making over the three- to five-year period following plan adoption, until the next plan update. Federal metropolitan planning regulations require the transportation plan to be reviewed and updated at least every four years in maintenance and nonattainment areas and at least every five years in attainment areas. The Eugene-Springfield region (the area within the combined Eugene-Springfield Urban Growth Boundaries) is designated as a maintenance area for carbon monoxide and designated as a nonattainment area for particulate matter (PM$_{10}$).

Figure 2, Context for the RTP, illustrates how the RTP is integrated into the overall transportation planning regulatory framework.

The RTP establishes the framework upon which the region’s public agencies can make consistent and coordinated planning decisions regarding inter- and intrajurisdictional transportation. The regional planning process ensures that the planning activities and investments of the local jurisdictions are coordinated in terms of intent, timing, and effect. The RTP sets forth the long-range policy framework for decision making for the following elements of the region’s multi-modal transportation system:

- Regional roadways,
- Regional transit system,
- Regional bikeways and pedestrian circulation,
- Regional goods movement (multiple modes), and
- Regional aspects of other modes, including air, rail, and inter-city bus service.

Other policy documents and ordinances, such as refinement plans and transportation system plans (TSPs), set forth guidelines for elements of the transportation system that are local rather than regional in nature.

Implementation actions accompany the **policy element** as a core component of the RTP. The implementation actions consist of adopted multi-modal capital investment actions and recommended (optional) planning and program actions for carrying out plan policies. The range of implementation actions ensures that local jurisdictions have flexibility in implementing regional policies.
The adopted RTP’s key transportation planning conclusions are summarized below:

The region can lessen the impact of the transportation challenges by implementing a balanced and integrated set of land use, transportation demand management (TDM), and transportation system improvement strategies.

The RTP strategies include nodal development and transit-supportive land use patterns, new and expanded TDM programs, and Bus Rapid Transit, in addition to roadway projects that benefit pedestrians, bicyclists, and motorists. All of these strategies can increase the attractiveness of transportation modes other than the single-occupant vehicle. The integration of transportation and land use planning is especially important to support compact urban growth, which provides for more pedestrian, bicycle, and transit-friendly environments, rather than urban sprawl that supports auto dependency.

The RTP recognizes that sole reliance on more and bigger roadways to meet the transportation demand is shortsighted. Even if adequate funding was available, given the growth anticipated in the region, it is unreasonable to assume the region can build its way out of traffic congestion. The technical evaluation of TransPlan alternatives indicated that the travel demand associated with growth will overload the transportation system, even with major capacity-increasing projects. Experience from cities all over the world suggests that building roads encourages more people to use cars, thereby perpetuating the transportation challenges. In addition, public sentiment indicates resistance to expanding existing roadways and building new roads that would impact open space and neighborhoods.

The technical evaluation of the alternative plan concepts indicated that implementation of a balanced set of strategies, such as those mentioned above, will enable the region to reduce reliance on the auto. Projections indicated fewer VMT system-wide, fewer miles of the transportation system experiencing traffic congestion, decreased number of drive-alone auto trips, increased amounts of shared auto trips, and an increase in shorter trip lengths.

The ability of the region to fund capacity-increasing roadway projects will be limited by other allocation decisions.

The region lacks the financial capacity to add enough streets and highways to maintain existing levels of service. Funding for capacity-increasing projects is impacted by other funding decisions, including the priority and the amount of resources allocated to operations, maintenance, and preservation of the existing system.

Implementation and expansion of TDM strategies can contribute to greater use of transportation modes other than the single-occupant vehicle.
It is unrealistic to assume that automobile dependency can be eliminated, but it can be managed and complemented with cost-effective modes of transportation other than autos. Encouraging the use of transportation modes other than the single-occupant vehicle will become more important as the region grows and traffic congestion levels increase. The technical evaluation of alternative plan concepts indicated that TDM strategies can contribute to greater use of modes such as bicycling, walking, transit, and carpooling.

The RTP focuses on voluntary demand management strategies, such as incentives, i.e., free or reduced-cost bus pass programs. In the future, the region may explore opportunities to establish market-based, user-pay programs to offset subsidization of the true cost of automobile use.

The region can maintain conformity with air quality standards over the next 20 years.

The travel forecasting model indicated that the region would be able to maintain conformity with existing national air quality standards through implementation of any of the alternative plan concepts. Despite traffic growth, the offsetting effects of less-polluting and more fuel-efficient new vehicles will cause a net decline in emissions, even under trend conditions. The attainment and maintenance of air quality standards is primarily due to improved auto emission technology, rather than reduced reliance on autos.

Participating Agencies and Geographic Area

The RTP represents a coordinated effort of public agencies and citizens. The local jurisdictions involved in regional transportation planning include the Lane Council of Governments (LCOG), the cities of Eugene, Springfield and Coburg, Lane County, and Lane Transit District (LTD). Other agencies involved in the planning process include the Oregon Department of Transportation (ODOT), the Lane Regional Air Pollution Authority (LRAPA), Oregon Department of Land Conservation and Development (DLCD), Federal Highway Administration (FHWA), and the Federal Transit Agency (FTA).

The RTP study area is illustrated in Figure 1.

A 2035 planning horizon has been developed to meet federal requirements for maintaining at least a 20-year financial constraint and air quality conformity determination. Revenue and cost estimates used in the RTP are through 2035, expressed in 2011 dollars.

Fundamental Components of Transportation Planning

The RTP Policy Framework (Chapter Two) and Implementation Actions (Chapter Three) are structured around three fundamental components of transportation planning:

1. Land use,
2. Transportation demand management, and
3. Transportation system improvements.

The RTP uses these components in a balanced and integrated manner to achieve results. These components can be visualized as the three sides of a balanced triangle, as illustrated in Figure 3. The triangle is supported by a foundation of finance policies and implementation actions. Finance policies provide the direction needed to fund implementation of the land use, demand management, and system improvement policies.

The land use component of transportation planning is addressed by the RTP policies and implementation actions that encourage meeting the need for transportation-efficient development patterns, such as nodal development and transit-supportive land use patterns. These development patterns reduce trip lengths and auto dependency and support transit, bicycling, and walking.

The demand management component is supported by the RTP policies and implementation actions that strive to meet the need to reduce demand on the transportation system. This reduced demand can occur through actions that eliminate the need for vehicle trips and increase the use of transit, carpooling and vanpooling, bicycling, and walking.

System improvements are supported by the RTP policies and implementation actions that address the need for improved operations and maintenance of the existing system and investments in system infrastructure and services. The RTP emphasizes the integration and coordination of system improvements and development patterns.

The RTP Update Process

To keep the plan relevant to current conditions, federal legislation requires an update of the plan every four years. Specifically, the federal guidelines state that:

“The MPO shall review and update the transportation plan at least every four years . . . to confirm the transportation plan’s validity and consistency with current and forecasted transportation and land use conditions and trends and to extend the forecast period to at least a 20-year planning horizon.”

The planning process envisioned in SAFETEA-LU) is a dynamic activity that effectively integrates current operational and preservation considerations with longer term mobility, environmental, and development concerns. This more frequent update requirement reflects the perspective that the function of the RTP is moving from a documentation of system development to contemporary decision tool. The four-year update cycle maintains the technical utility of the plan and its ability to serve the needs of local decision makers.

The table below shows the anticipated update schedule, with the RTP adoption in November 2011. At a minimum, updates will extend and adjust forecasts of land uses and the transportation system. Major updates may add a review of policies, priorities, and major projects.
Amendments to the RTP may occur at any time during an update cycle, with proper public notice and involvement. Air quality conformity analysis and financial constraint analysis will be prepared for each update or amendment as required by federal legislation. All updates and amendments will be adopted by the MPO policy body (MPC) and will include public involvement and outreach as required by federal regulations.

Schedule for RTP Updates

<table>
<thead>
<tr>
<th>Year</th>
<th>Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>Update Required</td>
</tr>
<tr>
<td>2012</td>
<td>Amendments, as needed</td>
</tr>
<tr>
<td>2013</td>
<td>Amendments, as needed</td>
</tr>
<tr>
<td>2014</td>
<td>Amendments, as needed</td>
</tr>
<tr>
<td>2015</td>
<td>Update Required</td>
</tr>
<tr>
<td>2016</td>
<td>Amendments, as needed</td>
</tr>
<tr>
<td>2017</td>
<td>Amendments, as needed</td>
</tr>
<tr>
<td>2018</td>
<td>Amendments, as needed</td>
</tr>
<tr>
<td>2019</td>
<td>Update Required</td>
</tr>
</tbody>
</table>

The City of Coburg’s TSP is scheduled for completion of an update in 2012. The Eugene TSP is scheduled for completion of an update in 2013. The Springfield TSP is scheduled for completion of an update in 2012.
Plan Organization and Contents
The remaining sections in the RTP are summarized below:

Chapter Two: Policy Element
- Presents goals, objectives, and policies that comprise the regional transportation planning policy framework for the region

Chapter Three: Plan Implementation
- Describes adopted Capital Investment Actions
- Describes optional Planning and Program Actions
- Presents a financial plan
- Describes air quality conformity
- Presents a parking management plan
- Presents a Regional Transportation Plan amendment process
- Summarizes the Intelligent Transportation System Operations and Implementation Plan

Chapter Four: Plan Performance and Implementation Monitoring
- Describes anticipated plan impacts and achievements
- Discusses the program for monitoring plan progress over time
- Describes the Congestion Management Process

Appendix A: Maps
Contains the following maps:
- Potential Nodal Development Areas
- Financially Constrained Roadway Projects
- Illustrative Roadway Projects
- Federally Designated Roadway Functional Classification
- Current Lane Transit District System (within the MPO area)
- Bus Rapid Transit System
- Financially Constrained Bikeway System Projects
- Priority Bikeway System Projects
- Illustrative Bikeway System Projects
- Goods Movement and Intermodal Facilities
- Transportation Demand Management/Commuter Solutions
- Congestion Management System Maps

Appendix B: Level of Service Standards
- Describes application of the level of service policy.

Appendix C: List of Supporting Documents
- Lists supporting documentation developed throughout the history of the Central Lane RTP.

Appendix D: Glossary and Acronyms
- Provides acronyms and glossary of key transportation and land use terms used in the RTP.

Appendix E: Executive Summary: Regional ITS Operations and Implementation Plan for the Eugene-Springfield Metropolitan Area

Appendix F: Environmental Consultation Materials
Figure 2
Context for the Regional Transportation Plan

Federal

Safe Accountable Flexible Efficient Transportation Equity Act - A legacy for users (SAFETEA - LU) 2004

State

Clean Air Act Amendments (CAAAM)
1990

Oregon Transportation Plan (OTP)
2006

Transportation Planning Rule (TPR)
2006

Statewide Transportation Improvement Program (STIP)
2010

Regional

2010 Central Lane Metropolitan Transportation Improvement Program (MTIP)
Regional Transportation Plan (RTP)
2010

Local

Metro Plan 1987

TransPlan 2002

Refinement and Corridor Plans

Coburg Master Plan

Coburg Transportation System Plan (TSP)

Figure 3
Fundamental Components of Transportation Planning
CHAPTER TWO

POLICY ELEMENT
Chapter 2: Policy Element

Table of Contents

Introduction ... 2

Part One: Goals .. 3
 Goal #1: Integrated Transportation and Land Use System ... 3
 Goal #2: Transportation System Characteristics ... 3

Part Two: Objectives .. 4
 Objective #1: Accessibility and Mobility .. 4
 Objective #2: Safety ... 5
 Objective #3: Environment .. 5
 Objective #4: Economic Vitality .. 6
 Objective #5: Public Involvement .. 6
 Objective #6: Coordination/Efficiency .. 8
 Objective #7: Policy Implementation .. 9

Part Three: Policies ... 10
 Consolidated List of Policies ... 11
 Transportation Demand Management Policies .. 19
 Transportation System Improvements: System-Wide Policies .. 21
 Transportation System Improvements: Roadway Policies ... 24
 Transportation System Improvements: Transit Policies ... 27
 Transportation System Improvements: Goods Movement Policies 34
 Transportation System Improvements: Other Modes Policies .. 35
 Finance Policies .. 36
Introduction

The *RTP* policy element guides transportation system planning in the Eugene-Springfield metropolitan area. A basic assumption in the development of the RTP policy element is that transportation systems do more than meet travel demand; they have a significant effect on the physical and socioeconomic characteristics of the areas they serve. Transportation planning must be viewed in terms of regional and community goals and values such as protection of the environment, impact on the regional economy, and maintaining the quality of life that area residents enjoy.

The policy element consists of the following components:

- Goals (2),
- Objectives (7), and
- Policies (37).

The RTP policy element is consistent with the region’s overall policy frameworks for regional planning as set forth in the *Eugene-Springfield Metropolitan Area General Plan* and other City of Coburg and Lane County planning documents.
Part One: Goals
The following definition is used for the RTP goals:

Broad statement of philosophy that describes the hopes of the people of the community for the future of the community. A goal may never be completely attainable but it is used as a point towards which to strive.

Goal #1: Integrated Transportation and Land Use System
Integrate transportation and land use to support transportation choices, promote all modes of transportation, reduce our reliance on any single mode of travel, and enhance community livability.

Definition/Intent: This goal recognizes the need to integrate transportation and land use planning to enhance livability, economic opportunity, and quality of life. Integration supports transportation-efficient development patterns and choices in transportation modes that reduce reliance on fossil fuels.

Goal #2: Sustainability and Transportation
a) Support regional sustainability by providing a transportation system that considers economic vitality, environmental health, and social equity.

Definition/Intent: The purpose of this goal is to reflect the region’s commitment to considering the three tenets of sustainability in planning a regional transportation system: economic, environmental, and social costs and benefits.
Part Two: Objectives

The following definition is used for the RTP objectives:

An objective is an attainable target that the community attempts to reach in striving to meet a goal. An objective may also be considered as an intermediate point that will help fulfill the overall goal.

Objective #1: Connectivity

Support an interconnected multi-modal transportation system that provides residents with access to a range of transportation choices.

Definition/Intent: This objective stresses the importance of an interconnected transportation system that provides for ease of transfer between modes of travel, such as auto to bus or bicycle to rail, and a system that provides users with a range of transportation choices.

Objective #2: Accessibility and Mobility

Provide adequate levels of accessibility and mobility for the efficient movement of people, goods, and services within the region.

Definition/Intent: Accessibility refers to physical proximity and ease of reaching destinations throughout the urban metropolitan area. This objective supports the need for multimodal accessibility to employment, shopping, other commerce, medical care, housing, and leisure, including adequate public transit access for people who are transportation disadvantaged. This objective also supports the need for improved access for tourists to destinations. Mobility is the ease with which a person is able to travel from place to place. It can be measured in terms of travel time.

Access and mobility are provided at different levels on different classes of transportation facilities. For example, a local street has a high level of accessibility for adjacent residences and businesses, with a low level of mobility for non-local traffic. An arterial street has a lower level of accessibility, with a higher level of mobility for through movement of travelers. Local jurisdictions will determine what constitutes adequate levels of accessibility and mobility and what is efficient movement of people, goods, and services within the region.

Objective #3: Safety

| Improve safety for users of all transportation modes through design, operations, maintenance, improvements, public information, and law enforcement. |

Definition/Intent: Safety is a key characteristic of our desired transportation system. This objective supports the need for taking a comprehensive approach to building, operating, and regulating the transportation system so that people feel confident, safe and secure around all modes of travel.

Reference: Based on OTP (1992) Policy 1G (currently OTP 2006 Policy 5.1); TEA 21 Metropolitan Planning Factor B (currently SAFETEA-LU planning factor B).

Objective #4: Environment

| Provide a transportation system that reflects our commitment to environmental quality. |

Definition/Intent: This objective places a priority on fulfilling the need to protect the region’s natural environment and conserving energy in all aspects of transportation planning processes. The primary intent of this objective can be met through compliance with all federal and state regulations relevant to environmental impact and consideration of applicable environmental impact analyses and practicable mitigation measures in transportation decision-making processes. Significant benefits can be achieved from coordinating the environmental process with the transportation planning process, such as early identification of issues and resources, development of alternatives that avoid or minimize impacts early in the project development process, and more rapid project delivery.

The region’s desire to reduce transportation-related energy consumption can be met through increased use of transit, telecommuting, zero-emissions vehicles, ridesharing, biking and walking, and through increased efficiency of the transportation network to diminish delay and corresponding fuel consumption.

Reference: Based on OTP (1992) Policy 1D (currently OTP 2006 Policy 4.1); TEA 21 Metropolitan Planning Factor D (currently SAFETEA-LU planning factor E); Statewide Planning Goal 5: Open Spaces, Scenic, and Historic Areas, and Natural Resources; Goal 6: Air, Water, and Land Resources Quality.
Objective #5: Economic Vitality

Support transportation strategies that improve the economic vitality of the region, enhance economic opportunity, and increase the reliability and efficiency of our freight system.

Definition/Intent: The region’s economy is highly dependent upon its transportation system for the circulation of goods, services, and passengers. An efficient transportation system promotes new business and encourages existing business; contributes to improved employee recruitment and retention; and supports freight movement and intermodal transfer points within the region. Investments in transportation infrastructure can support and promote regional economic objectives.

Reference: Based on OTP (1992) Goal 3 (currently OTP 2006 Goal 3); Statewide Planning Goal 9: Economic Development; TEA 21 Metropolitan Planning Factor A (currently SAFETEA-LU planning factor A).

Objective #6: Equity

Conduct planning, analysis, and public involvement to ensure that the benefits and impacts of transportation decisions are distributed fairly to all people.

Definition/Intent: This objective communicates our desire to ensure that the benefits and the impacts of our transportation system are socially equitable and respect basic civil rights. An equitable transportation system allows people to gain access to good jobs, education, and needed services as affordably as possible.

Objective #7: Public Health

Expand transportation decision-making to meet related public health objectives, including reduced crashes, cleaner air, and increased physical activity.

Definition/Intent: This objective recognizes the relationship of our transportation system to a number of public health issues, including access to clean air and water and support for active lifestyles that include walking and biking.
Objective #8: Greenhouse Gas (GHG) Emissions Reduction

Consider strategies to reduce transportation sector greenhouse gas emissions in compliance with current legislation and as aligned with the region’s other transportation system goals and objectives.

Definition/Intent: This objective is to communicate our region’s participation in the reduction of statewide greenhouse gas emissions within the transportation sector as described in recent Oregon legislation. This includes relevant sections of HB 2001, the Jobs and Transportation Act and HB 1059, legislation that established the Oregon Sustainable Transportation Initiative.

Objective #9: Transit

Provide an effective and efficient transit system with stable capital and operating resources.

Definition/Intent: This objective recognizes our strong commitment to a sustainable public transit system, including standard bus services, bus-rapid transit, and the provision of accessible transportation for seniors and people with disabilities.

Objective #10: Rapid Passenger Rail

Promote Oregon’s development of reliable and efficient rapid passenger rail as part of the Cascadia rail corridor from Eugene to Vancouver, BC.

Definition/Intent: This objective is included as part of our region’s commitment to the development of a statewide plan for improved passenger rail service, and participation in improving service and infrastructure along the internationally significant Cascadia rail corridor that connects Eugene/Springfield to Portland, OR, Seattle, WA and Vancouver, BC.
Objective #11: Public Involvement

Provide citizens with information to increase their awareness of transportation issues, encourage their involvement in resolving the issues, and assist them in making informed transportation choices.

Definition/Intent: This objective supports the need for early and continuing public participation in transportation planning, programming, and implementation. It also supports a proactive public involvement process that provides complete information, timely public notice, and full public access to key decisions. To understand and support the RTP policies, residents need reliable information and opportunities to participate in the further development and implementation of the plan.

Reference: Based on OTP (1992) Policy 4N (currently OTP 2006 Policy 7.3); TEA 21 Public Involvement Requirements (currently SAFETEA-LU public participation requirements); Statewide Planning Goal 1: Citizen Involvement.

Objective #12: Coordination/Efficiency

Coordinate among agencies to facilitate efficient planning, design, operation, and maintenance of transportation facilities and programs.

Definition/Intent: The primary intent of this objective is to ensure that public agencies involved with the region’s transportation coordinate to meet the need for efficiency. A second aspect of this objective is to support opportunities for coordination between the public and private sectors, which results in transportation efficiencies. Although the infrastructure for the transportation system of the 21st century is largely in place, the system must be managed more efficiently as it is used more intensively. This objective supports the research, evaluation, and implementation of innovative management practices, land use patterns, and new technologies.

Objective #13: Implementation

Implement a range of actions as determined by local governments, including land use, demand management, and system improvement strategies, to carry out transportation policies.

Definition/Intent: This objective supports the integration of land use, system improvements, and demand management strategies to meet the region’s transportation needs. The region will continue to implement these three types of strategies and reliance on any one type of strategy will be avoided. The range of RTP implementation actions provides local governments with the flexibility needed to implement the regional policies. Due to limited resources, not all RTP policies and implementation actions will be implemented simultaneously.

Reference: Based on *TransPlan* (RTP) 1986 Planning and Coordination Policy section.
Part Three: Policies

The following definition is used for the RTP policies:

A policy is a statement adopted as part of TransPlan to provide a consistent course of action, moving the community towards attainment of its goals.

The policies presented in this chapter are structured in the following categories:

1. Land Use
2. Transportation Demand Management
3. Transportation System Improvements
 a) System-Wide
 b) Roadways
 c) Transit
 d) Bicycle
 e) Pedestrian
 f) Goods Movement
 g) Other Modes
4. Finance

A consolidated list of RTP policies is followed by expanded policy sections. Each section includes Findings that provide the factual basis for the policies. The policy Definition/Intent statements provide explanations for the policy statement, but do not represent adopted policy.

The policies are direction statements that guide present and future decisions on how the goals will be achieved. The transportation policies represent an integrated and balanced approach to transportation planning in the Central Lane MPO area. This integration was developed by considering the interaction among land use, demand management, and transportation system improvements strategies. Consistent with requirements in the state TPR, the policies support a coordinated network of transportation facilities adequate to serve state, regional, and local transportation needs. The policies are applicable to the entire MPO region and can be applied in a variety of ways, using a range of specific actions. Implementation actions are set forth in Chapter Three. These actions provide individual jurisdictions with the flexibility to implement RTP policies using methods most suitable to a particular circumstance. It is important to note that policy implementation is limited by considerations such as fiscal constraint and identification of competing concerns.

Not all RTP policies will apply to a specific transportation-related decision. For a decision where conformance with adopted policy is required, policies in the RTP and other adopted policy documents within the MPO area will be examined to determine which policies are relevant and can be applied. In the event that the application of policies leads to the identification of policies that support varying positions, decision makers will work to achieve a balance of all applicable policies. Whereas goals are timeless, some policies will expire as they are implemented. Amendments and future updates of the RTP will ensure that policies are current.
Consolidated List of Policies

Land Use Policies

Land Use Policy #1: Nodal Development
Apply the nodal development strategy in areas selected by each jurisdiction that have identified potential for this type of transportation-efficient land use pattern.

Land Use Policy #2: Support for Nodal Development
Support application of the nodal development strategy in designated areas through information, technical assistance, or incentives.

Land Use Policy #3: Transit-Supportive Land Use Patterns
Provide for transit-supportive land use patterns and development, including higher intensity, transit-oriented development along major transit corridors and near transit stations; medium- and high-density residential development within ¼ mile of transit stations, major transit corridors, employment centers, and downtown areas; and development and redevelopment in designated areas that are or could be well served by existing or planned transit.

Land Use Policy #4: Multi-Modal Improvements in New Development
Require improvements that encourage transit, bicycles, and pedestrians in new commercial, public, mixed-use, and multi-unit residential development.

Land Use Policy #5: Implementation of Nodal Development
Within three years of TransPlan adoption, apply the ND, Nodal Development designation to areas selected by each jurisdiction, adopt and apply measures to protect designated nodes from incompatible development and adopt a schedule for completion of nodal plans and implementing ordinances.

TDM Policies

TDM Policy #1: TDM Program Development
Expand existing TDM programs and develop new TDM programs. Establish TDM benchmarks and if the benchmarks are not achieved, mandatory programs may be established.

TDM Policy #2: Parking Management
Increase the use of motor vehicle parking management strategies in selected areas throughout the Central Lane MPO area.

TDM Policy #3: Congestion Management
Implement TDM strategies to manage demand at congested locations.

TSI System-Wide Policies

TSI System-Wide Policy #1: Transportation Infrastructure Protection and Management
Protect and manage existing and future transportation infrastructure.

TSI System-Wide Policy #2: Intermodal Connectivity
Develop or promote intermodal linkages for connectivity and ease of transfer among all transportation modes.

TSI System-Wide Policy #3: Corridor Preservation
Preserve corridors, such as rail rights-of-way, private roads, and easements of regional significance, that are identified for future transportation-related uses.

TSI System-Wide Policy #4: Neighborhood Livability
Support transportation strategies that enhance neighborhood livability.

TSI System-Wide Policy #5: TransPlan Project Lists
Adopt by reference as part of the Metro Plan the 20-Year Capital Investment Actions project lists contained in TransPlan. Project timing and estimated costs are not adopted as policy.

TSI Roadway Policies

TSI Roadway Policy #1: Mobility and Safety for all Modes
Address the mobility and safety needs of motorists, transit users, bicyclists, pedestrians, and the needs of emergency vehicles when planning and constructing roadway system improvements.
TSI Roadway Policy #2: Motor Vehicle Level of Service
1. Use motor vehicle level of service standards to maintain acceptable and reliable performance on the roadway system. These standards shall be used for:
 a. Identifying capacity deficiencies on the roadway.
 b. Evaluating the impacts on roadways of amendments to transportation plans, acknowledged comprehensive plans and land-use regulations, pursuant to the TPR (OAR 660-12-0060).
 c. Evaluating development applications for consistency with the land-use regulations of the applicable local government jurisdiction.
2. Acceptable and reliable performance is defined by the following levels of service under peak hour traffic conditions: Level of Service E within Eugene’s Central Area Transportation Study (CATS) area, and Level of Service D elsewhere.
 In some cases, the level of service on a facility may be substandard. The local government jurisdiction may find that transportation system improvements to bring performance up to standard within the planning horizon may not be feasible, and safety will not be compromised, and broader community goals would be better served by allowing a substandard level of service. The limitation on the feasibility of a transportation system improvement may arise from severe constraints including but not limited to environmental conditions, lack of public agency financial resources, or land use constraint factors. It is not the intent of TSI Roadway Policy #2: Motor Vehicle Level of Service to require deferral of development in such cases. The intent is to defer motor vehicle capacity increasing transportation system improvements until existing constraints can be overcome or develop an alternative mix of strategies (such as: land use measures, TDM, short-term safety improvements) to address the problem.

TSI Roadway Policy #3: Coordinated Roadway Network
In conjunction with the overall transportation system, recognizing the needs of other transportation modes, promote or develop a regional roadway system that meets combined needs for travel through, within, and outside the region.

TSI Roadway Policy #4: Access Management
Manage the roadway system to preserve safety and operational efficiency by adopting regulations to manage access to roadways and applying these regulations to decisions related to approving new or modified access to the roadway system.

TSI Transit Policies
TSI Transit Policy #1: Transit Improvements
Improve transit service and facilities to increase the system’s accessibility, attractiveness, and convenience for all users, including the transportation disadvantaged population.

TSI Transit Policy #2: Bus Rapid Transit
Establish a Bus Rapid Transit (BRT) system composed of frequent, fast transit service along major corridors and neighborhood feeder service that connects with the corridor service and with activity centers, if the system is shown to increase transit mode split along BRT corridors, if local governments demonstrate support, and if financing for the system is feasible.

TSI Transit Policy #3: Transit/High-Occupancy Vehicle (HOV) Priority
Implement traffic management strategies and other actions, where appropriate and practical, that give priority to transit and other HOVs.

TSI Transit Policy #4: Park-and-Ride Facilities
Expand the Park-and-Ride system within the metropolitan area and nearby communities.

TSI Bicycle Policies
TSI Bicycle Policy #1: Bikeway System and Support Facilities
Construct and improve the region’s bikeway system and provide bicycle system support facilities for both new development and redevelopment/expansion.

TSI Bicycle Policy #2: Bikeways on Arterials and Collectors
Require bikeways along new and reconstructed arterial and major collector streets.

TSI Bicycle Policy #3: Bikeway Connections to New Development
Require bikeways to connect new development with nearby neighborhood activity centers and major destinations.

TSI Bicycle Policy #4: Implementation of Priority Bikeway Miles
Give funding priority (ideally within the first 3 to 5 years after adoption of TransPlan, subject to available funding) to stand-alone bikeway projects that are
included in the definition of “Priority Bikeway Miles” and that increase the use of alternative modes.

TSI Pedestrian Policies

TSI Pedestrian Policy #1: Pedestrian Environment
Provide for a pedestrian environment that is well integrated with adjacent land uses and is designed to enhance the safety, comfort, and convenience of walking.

TSI Pedestrian Policy #2: Continuous and Direct Routes
Provide for a continuous pedestrian network with reasonably direct travel routes between destination points.

TSI Pedestrian Policy #3: Sidewalks
Construct sidewalks along urban area arterial and collector roadways, except freeways.

TSI Goods Movement Policies

TSI Goods Movement Policy #1: Freight Efficiency
Support reasonable and reliable travel times for freight/goods movement in the Central Lane MPO region.

TSI Other Modes Policies

TSI Other Modes Policy #1: Eugene Airport
Support public investment in the Eugene Airport as a regional facility and provide land use controls that limit incompatible development within the airport environs. Continue to use the Eugene Airport Master Plan as the guide for improvements of facilities and services at the airport.

TSI Other Modes Policy #2: High Speed Rail Corridor
Support provision of rail-related infrastructure improvements as part of the Cascadia High Speed Rail Corridor project.

TSI Other Modes Policy #3: Passenger Rail and Bus Facilities
Support improvements to the passenger rail station and inter-city bus terminals that enhance usability and convenience.

Finance Policies

Finance Policy #1: Adequate Funding
Support development of a stable and flexible transportation finance system that provides adequate resources for transportation needs identified in the RTP.

Finance Policy #2: Operations, Maintenance, and Preservation
Operate and maintain transportation facilities in a way that reduces the need for more expensive future repair.

Finance Policy #3: Prioritization of State and Federal Revenue
Set priorities for investment of Oregon Department of Transportation (ODOT) and federal revenues programmed in the region’s Metropolitan Transportation Improvement Program (MTIP) to address safety and major capacity problems on the region’s transportation system.

Finance Policy #4: New Development
Require that new development pay for its capacity impact on the transportation system.

Finance Policy #5: Short-Term Project Priorities
Consider and include among short-term project priorities, those facilities and improvements that support mixed-use, pedestrian-friendly nodal development and increased use of alternative modes.

Finance Policy #6: Eugene-Specific Finance Policy
The City of Eugene will maintain transportation performance and improve safety by improving system efficiency and management before adding capacity to the transportation system under Eugene’s jurisdiction.
Land Use Policies

Land Use Policies encourage design and development of land use patterns that support the increased use of alternative modes of travel (e.g., transit, biking, walking, carpooling) and reduce the dependence on the automobile. Favorable impacts of implementing these policies with regard to improving transportation efficiency will be realized over a 40- to 50-year period. These policies support the fundamental principle of compact urban growth contained within the Oregon Statewide Planning Goals.

Land Use Findings

1. The OTP, 2006, recognizes that Oregon’s land use development patterns have tended to separate residential areas from employment and commercial centers, requiring people to drive almost everywhere they go; that the results have been increased congestion, air pollution, and sprawl in the metropolitan areas and diminished livability; that these auto-dependent land use patterns limit mobility and transportation choices; and that reliance on the automobile has led to increased congestion, travel distances, and travel times.

2. Studies annotated in the Land Use Measures Task Force Report Bibliography have found that land use development patterns have an impact on transportation choices; that separation of land uses and low-density residential and commercial development over large areas makes the distance between destinations too far apart for convenient travel by means other than a car; and that people who live in neighborhoods with grid pattern streets, nearby employment and shopping opportunities, and continuous access to sidewalks and convenient pedestrian crossings tend to make more walking and transit trips. The Market Demand Study for Nodal Development, ECO Northwest and Leland Consulting Group, 1996, recommended that the public strategy for nodal development should be flexible and opportunistic and include use of financial incentives, targeted infrastructure investments, public-private partnerships, and an inviting administrative atmosphere.

3. The Oregon Highway Plan (OHP) (January 1999, as amended through January 2006) states that focusing growth on more compact development patterns can benefit transportation by: reducing local trips and travel on state highways; shortening the length of many vehicle trips; providing more opportunities to walk, bicycle, or use available transit services; increasing opportunities to develop transit, and reducing the number of vehicle trips to shop and do business.

4. OTP policies emphasize reducing reliance on the automobile and call for transportation systems that support mixed land uses, compact cities, and connections among various transportation modes to make walking, bicycling and the use of public transit easier. The OTP provides that the state will encourage and give preference to projects and grant proposals that support compact or infill development or mixed-use projects. The OTP also contains actions to promote the design and development of infrastructure and land use patterns that encourage alternatives to the single-occupant automobile.
5. The Oregon Transportation Planning Rule [OAR 660-012-0060 (1)(c,d)(5)] encourages plans to provide for mixed-use, pedestrian-friendly development based on information that documents the benefits of such development and the Land Conservation and Development Commission’s policy interest in encouraging such development to reduce reliance on the automobile. The rule [OAR 660-012-0045 (4)(a and e)] requires local governments to adopt land use regulations that allow transit-oriented developments on lands along transit routes and require major developments to provide either a transit stop on site or connection to a transit stop when the transit operator requires such an improvement. The rule [OAR 660-012-0045 (3)] also requires local governments to adopt land use regulations that provide for safe and convenient pedestrian and bicycle access within new developments and from these developments to adjacent residential areas and transit stops and to neighborhood activity centers.

6. Nodal development is consistent with the policy direction of Policy 1B of the Oregon Highway Plan to coordinate land use and transportation decisions to efficiently use public infrastructure investments to:
 - Maintain the mobility and safety of the highway system,
 - Foster compact development patterns in communities,
 - Encourage the availability and use of transportation alternatives, and
 - Enhance livability and economic competitiveness.

7. Nodal development is consistent with the Special Transportation Area (STA) designation defined in the draft OHP. The designation is intended to guide planning and management decisions for state highway segments inside nodal development areas.

8. Nodal development supports the fundamental principles, goals, and policies of the adopted Eugene-Springfield Metro Plan to achieve compact urban growth, increase residential densities, and encourage mixed-use developments in designated areas. The Land Use Measures Strategies Document found that nodal development also supports increased use of alternative modes of transportation and increased opportunities for people to live near their jobs and to make shorter trips for a variety of purposes.

9. Based on the analysis of the Regional Travel Forecasting Model results for the 2010-2035 time period, an overall outcome of nodal development implementation will be that the percentage of person trips under one mile can be increased to approximately 18.6 percent of all trips; and, on a regional basis, that trip lengths will remain essentially unchanged in 2035 compared to 2010.

10. Based on the analysis of the Regional Travel Forecasting Model results for the 2010-2035 time period, investments in non-auto modes, particularly BRT, and implementation of nodal development strategies will lead to improved transportation choices by helping to increase the percentage of non-auto trips from 14.9 percent to 15.6 percent by the year 2035.
11. Prior to adoption of the 2002 TransPlan, the public review of the nodal development strategy resulted in many comments that identified the need for incentives for developers, builders, property owners, and neighborhoods to ensure that nodal developments would be built consistent with design guidelines. The type of support and incentives suggested ranged from public investments in infrastructure to technical assistance and economic incentives.

Land Use Policy #1: Nodal Development

| Apply the nodal development strategy in areas selected by each jurisdiction that have identified potential for this type of transportation-efficient land use pattern. |

Policy Definition/Intent: Nodal development supports mixed land uses in designated areas to increase opportunities for people to live near their jobs and to make shorter trips for a variety of purposes. Nodal development also supports the use of alternative modes of transportation. Each jurisdiction will select the most appropriate implementation actions to carry out this policy.

This policy refines and expands existing Eugene-Springfield Metro Plan concepts and policy direction that provide for mixed-use development and higher average residential densities in certain areas of the Eugene-Springfield area. The nodal development strategy is consistent with the definition of STAs, included in the adopted OHP. STAs include central business districts, transit-oriented development areas, and other activity or business centers that emphasize non-auto travel.

This policy is not intended to limit the types of nodal development patterns. Nodal development areas may vary in the amount, type, and orientation of commercial, civic, and employment uses; building size; amount and types of residential uses; and commercial intensity. The nodes will be pedestrian-friendly environments with a mix of land uses, including public open spaces that are pedestrian-, transit-, and bicycle-oriented. Nodes will have commercial cores that contain a compatible mix of retail, office, employment, and civic uses. The amount and types of commercial and civic uses in the core should be consistent with the type of nodal development center. The core should be adjacent to a frequently serviced transit stop. Nodal development centers will include a mix of housing types that achieve at least an average density that is within the medium-density range for residential uses.

This policy supports the growth of downtown Eugene and Springfield as commercial, residential, civic, and employment centers. The intent of this policy is to support development of the downtowns as vital urban centers by encouraging a compatible mix of uses, including housing. In doing so, more people may choose to live near their jobs, accomplish more trip objectives without needing to travel away from the downtowns, and use transit for external trips.
This policy supports the growth and diversification of employment centers by allowing a mix of new commercial, governmental, and light industrial uses and, where appropriate, residential uses in close proximity.

Reference: Summary Description of Proposed Nodal Development Areas (August 1995); Policy Makers’ Decision Package for Draft Plan Direction (Decision Package), November 1996, Strategy 1; Metro Plan Transportation Element Policy 2; Statewide Planning Goal 2: Land Use, Goal 10: Housing.

Land Use Policy #2: Support for Nodal Development

Support application of the nodal development strategy in designated areas through information, technical assistance, or incentives.

Policy Definition/Intent: The intent of this policy is to encourage nodal development through public support and incentives, recognizing that there is public benefit to the transportation and land use efficiencies of nodal development. Although a market exists for this type of development, nodal development is relatively new to this region and may involve more perceived risk than typical development. Many developers, builders, and lenders lack knowledge and experience with nodal development. Consequently, it is important that public bodies be supportive partners and help mitigate uncertainties and perceived risks. Examples of support include design guidelines, streamlined review processes, marketing assistance, and public infrastructure improvements.

Reference: Based on Decision Package, November 1996, Strategies 1 and 12; Market Demand Study for Nodal Development.
Land Use Policy #3: Transit-Supportive Land Use Patterns

Provide for transit-supportive land use patterns and development, including higher intensity, transit-oriented development along major transit corridors and near transit stations; medium- and high-density residential development within ¼ mile of transit stations, major transit corridors, employment centers, and downtown areas; and development and redevelopment in designated areas that are or could be well served by existing or planned transit.

Policy Definition/Intent: The intent of this policy is to encourage more concentrated development and higher density housing in locations that are or could be served by high levels of transit service. By doing so, transit will be more convenient for a greater number of businesses and people and, in turn, the higher levels of transit will be supported by more riders.

Reference: Based on *Metro Plan* 1987 Transportation Policies 2c, 2f, and 2e; TPR 660-12-045(4)(g); Statewide Planning Goal 2: Land Use.

Land Use Policy #4: Multi-Modal Improvements in New Development

Require improvements that encourage transit, bicycles, and pedestrians in new commercial, public, mixed-use, and multi-unit residential development.

Policy Definition/Intent: This policy supports efforts to improve the convenience of using transit, biking, or walking to travel to, from, and within newly developed and redeveloped areas. This policy recognizes the importance of providing pedestrian and bikeway connections within the confines of individual developments to provide direct, safe, and convenient internal pedestrian and bicycle circulation. This policy supports implementation of code amendments, such as those made through the Transportation Rule Implementation Project (TRIP) in Eugene. Note that private industrial development is not covered under this policy.

Reference: Based on *Metro Plan* 1987 Transportation Policy 5; Decision Package, November 1996; TPR 660-12-045(3)(b); Statewide Planning Goal 2: Land Use.

Land Use Policy #5: Implementation of Nodal Development

Within three years of TransPlan adoption, apply the ND, Nodal Development designation to areas selected by each jurisdiction; adopt applicable measures to protect designated nodes from incompatible development and adopt a schedule for completion of nodal plans and implementing ordinances.

Policy Definition/Intent: This policy was added at the request of the Department of Land Conservation and Development Commission. The nodal development strategy anticipates a significant change in development patterns within proposed nodes.
Development of these areas under existing plan designations and zoning provisions could result in development patterns inconsistent with nodal development. This policy documents a commitment by the elected officials to apply the new /ND nodal development Metro Plan designation and new zoning regulations to priority nodal development areas within three years of TransPlan adoption, subject to available funding.

Reference: Based on DLCD testimony; Joint Adopting Official review.

Transportation Demand Management Policies

Transportation demand management (TDM) policies direct the development and implementation of actions that encourage the use of modes other than single-occupant vehicles to meet daily travel needs. The TDM policies support changes in travel behavior to reduce traffic congestion and the need for additional road capacity and parking and to support desired patterns of development.

TDM Findings

1. TDM addresses federal SAFETEA-LU and state TPR requirements to reduce reliance on the automobile, thus helping to postpone the need for expensive capital improvements. The need for TDM stems from an increasing demand for and a constrained supply of road capacity, created by the combined effects of an accelerated rate of population growth (24% projected increase from 20104 to 2035) and increasing highway construction and maintenance costs; for example, the City of Eugene increased the Transportation systems development charges by a total of 15 percent to account for inflation from 1993-1996.

2. The Regional Travel Forecasting Model revealed that average daily traffic on most major streets was growing by 2-3 percent per year prior to the 2002 adoption of TransPlan. Based on 1994 Commuter Pack Survey results, half of the local residents find roads are congested at various times of the day; and the vast majority finds roads are congested during morning and evening rush hours.

3. The COMSIS TDM Strategy Evaluation Model, used in August, 1997 to evaluate the impact of TDM strategies, found that vehicle miles traveled (VMT) and vehicle trips are reduced up to 3 percent by voluntary strategies (e.g., employer-paid bus pass program) and up to 10 percent by mandatory strategies (e.g., mandatory employer support); that requiring employers to increase the cost of employee parking is far more effective than reducing employee transit costs; and that a strong package of voluntary strategies has a greater impact on VMT and vehicle trips than a weak package of mandatory strategies.

4. Lane Transit District (LTD) system ridership increased 133 percent from fiscal year 1987 (prior to the implementation of the first group pass program with University of Oregon students and employees in 1988) to fiscal year 2011.
5. The OHP recognizes that TDM strategies can be implemented to reduce trips and impacts to major transportation facilities, such as freeway interchanges, postponing the need for investments in capacity-increasing projects.

6. The study, *An Evaluation of Pricing Policies for Addressing Transportation Problems* (ECONorthwest, July 1995), found that implementation of congestion pricing in the Eugene-Springfield area would be premature because the level of public acceptance is low and the costs of implementation are substantial; and that parking pricing is the only TDM pricing strategy that would be cost-effective during the 20-year planning period.

TDM Policy #1: TDM Program Development

| Expand existing TDM programs and develop new TDM programs. Establish TDM benchmarks and if the benchmarks are not achieved, mandatory programs may be established. |

Policy Definition/Intent: This policy supports expansion and development of a broad spectrum of local and regional TDM programs at varying levels of implementation. TDM programs will focus on reducing trips for nonwork purposes, as well as for work commutes. Voluntary participation in TDM programs will be encouraged through marketing and incentives to target audiences, including the general public, developers, employers, employees, school administrators, and students. An adequate funding program must be developed to support implementation of TDM programs. This policy also supports the exploration of opportunities to establish a market-based, user-oriented approach to TDM through the use of transportation pricing measures.

Reference: *TransPlan* 1986, Policies AM3, AM7, TSM2; Decision Package, November 1996, Strategy 2; TPR 660-12-045(5)(b).

TDM Policy #2: Parking Management

| Increase the use of motor vehicle parking management strategies in selected areas throughout the Eugene-Springfield metropolitan area. |

Policy Definition/Intent: Parking management strategies address both the supply and demand for vehicle parking. They contribute to balancing travel demand within the region among the various modes of transportation available. To promote parking equity in the region, consideration should be given to applying parking management strategies at a region-wide level, in addition to downtown centers.

TDM Policy #3: Congestion Management

Implement TDM strategies to manage demand at congested locations.

Policy Definition/Intent: Encouraging the use of alternative modes will become more important as the region grows and traffic congestion levels increase. A variety of strategies can be employed to help maintain mobility in congested locations as the area develops. TDM strategies implemented to manage demand at congested locations will be coordinated with other types of congestion management strategies, such as access management. This policy supports selective application of mandatory TDM strategies to manage demand at congested locations. For example, local jurisdictions could be allowed to require employers to designate an employee transportation coordinator and to implement programs that encourage employees to use alternative modes.

Reference: Based on Decision Package, November 1996, Strategy 2.

Transportation System Improvements: System-Wide Policies

Transportation System Improvement System-Wide Policies contain policy direction that is applicable to planning and implementation for all transportation system modes in the Central Lane MPO area. In general, the transportation system improvement policies support choices in modes of travel and desired patterns of development through efficient use of the existing system infrastructure and design and implementation of appropriate system improvements.

TSI System-Wide Findings

1. The number of vehicles, VMT, and use of the automobile are all increasing while use of alternatives is decreasing. Between 1970 and 2000, the number of vehicles in Lane County increased by 110 percent, while the number of households increased by 91 percent. Between 1980 and 1990, VMT grew at a rate seven times that of the population growth. The *Regional Travel Forecasting Model* projected that, by the year 2015, without implementation of proposed RTP projects, non-commercial VMT will increase 52% while the percentage who bike will drop from 3.7% to 3.3%, walk from 8.9% to 7.9%, and the percentage who bus will increase only slightly from 1.8% to 1.9%.

2. The OHP recognizes that access management strategies can be implemented to reduce trips and impacts to major transportation facilities, such as freeway interchanges, and that communities with compact urban designs that incorporate a transportation network of arterials and collectors will reduce traffic impacts on state highways, postponing the need for investments in capacity-increasing projects.

3. *Oregon Highway Plan* (January 1999, as amended) policy supports investment in facilities that improve intermodal linkages as a cost-effective means to increase the efficient use of the existing transportation system.
4. Current literature and research speaks to the relationship between street design and travel behavior, finding that neighborhood impacts, such as through-traffic and speeding on neighborhood streets, are affected by street design. For example, research by Richard Dowling and Steven Colman reported in the article, *Effects of Increased Highway Capacity: Results of a Household Travel Behavior Survey*, 1998, found that drivers' number one preferred response to congestion was to find a faster route if the current one becomes congested; and Calthorpe and Duany/Platter-Zybecks and Anton Nelleson have found that the layout and design of buildings and streets will influence user behavior and that streets can be designed to reduce travel speeds and reduce cut-through trips.

TSI System-Wide Policy #1: Transportation Infrastructure Protection and Management

Protect and manage existing and future transportation infrastructure.

Policy Definition/Intent: This policy calls for the protection and management of transportation facilities for all modes, within the limits of available funding, in a way that sustains their long-term capacity and function. Given the limited funding for future transportation projects and operations, maintenance and preservation activities, the need to protect and manage existing and future transportation investments and facilities is crucial. Strategies related to access management, TDM, and land use can be implemented to reduce trips and impacts to major transportation facilities, such as freeway interchanges, thereby postponing the need for investments in capacity-increasing projects.

Reference: TPR 660-12-045(2), TPR 660-12-060 (Plan and Land Use Regulation Amendments); OTP (1992) Policy 1B (currently OTP 2006 Policy 2.1); ISTEA Section 450.316(a) Metropolitan Planning Organization (MPO) Planning Factor 4.

TSI System-Wide Policy #2: Intermodal Connectivity

Develop or promote intermodal linkages for connectivity and ease of transfer among all transportation modes.

Policy Definition/Intent: An intermodal transportation system is one that includes all forms of transportation in a unified, connected manner. An intermodal trip is one that involves two or more modes between the trip origin and destination. Intermodal linkages are the transfer points along the way, such as Park-and-Ride lots. In transit, intermodal transfers allow providers to serve a greater segment of the population. For freight, intermodal transfers allow shippers to take advantage of the economies of each mode, such as truck and rail, to achieve the most cost-effective and timely deliveries of goods.

TSI System-Wide Policy #3: Corridor Preservation

Preserve corridors, such as rail rights-of-way, private roads, and easements of regional significance, that are identified for future transportation-related uses.

Policy Definition/Intent: This policy supports the preservation of corridors not in public ownership that connect existing streets or paths or provide alternate routes to existing streets or paths.

Reference: Based on OTP (1992) Action 1B.4; ISTEA Section 450.316(a) MPO Planning Factor 10.

TSI System-Wide Policy #4: Neighborhood Livability

Support transportation strategies that enhance neighborhood livability.

Definition/Intent: Transportation-related impacts on neighborhood livability include excessive intrusion of regional vehicle movement on local residential streets, excessive vehicle speeds, and excessive traffic noise. Strategies aimed at improving flow on arterials, such as access management measures, may draw traffic from neighborhood streets that, based on travel characteristics, should be properly using the arterial.

Local governments will implement strategies to address neighborhood traffic impacts, but personal attitudes and behavior are the major factors in determining how residents travel around the region and the impact this travel has on neighborhoods. Choosing to shop locally, walking or cycling children to school, riding the bus to work, combining trips, driving slowly on residential streets, and avoiding short cuts through neighborhoods are examples of how individuals can help to reduce neighborhood traffic impacts.

TSI System-Wide Policy #5: TransPlan Project Lists

Adopt by reference as part of the Metro Plan the 20-Year Capital Investment Actions project lists contained in TransPlan. Project timing and estimated costs are not adopted as policy.

Definition/Intent: This policy defines the adopted portions of the TransPlan 20-year Capital Investment Action project lists. Consistent with the requirements of Goal 11, Administrative Rule OAR660, Division 11. This policy was added to make it clear that the project lists in TransPlan, along with the policies in TransPlan, are adopted by ordinance as part of Metro Plan. An adopted project list is a requirement of the Transportation Planning Rule (TPR) (OAR 660-012-0020). The fiscally constrained...
project list identifies projects as being of higher priority than those on the future project lists. The TPR is structured so that issues not considered at the plan level are addressed during the Project Development Phase. OAR 660-012-0050 Transportation Project Development addresses the concerns raised here. Many of the details of the projects are not known at this time and will be addressed during the Project Development phase of project implementation. The Project Development Process contains specific requirements for public involvement, notice, and findings of compliance with applicable land use and environmental rules.

Reference: This policy was added after Draft TransPlan Planning Commission review based on advice from legal counsel.

Transportation System Improvements: Roadway Policies

Roadway Policies are relevant to the region’s roadway system, which is comprised of arterial and collector streets. The policies refer to a multi-modal roadway system with infrastructure that serves the needs of all modes. The automobile continues to be the dominant form of passenger travel and much of the region’s roadway system was designed to accommodate increasing automobile use. However, roadways serve the transit system and most modern roadways are built to serve bicycle and pedestrian travel. Roadways also play a role in the movement of freight and are the backbone of commerce in the region. In serving these varied needs, the region must continue to move towards a multi-modal roadway system that responds to the needs of all forms and purposes of travel.

TSI Roadway Findings

1. The Regional Travel Forecasting Model forecasted increased traffic congestion on roadways from 2010 to 2035, which indicate a 182 percent increase over existing congestion levels.

2. Level of service (LOS) standards are a nationally accepted means for measuring the performance of roadway facilities. LOS analysis methods are standardized through the Transportation Research Board’s Highway Capacity Manual.

3. The OHP establishes performance standards for all state highways in Oregon. OAR 660-012-0015 requires coordination of transportation system plans with the state.

TSI Roadway Policy #1: Mobility and Safety for all Modes

Address the mobility and safety needs of motorists, transit users, bicyclists, pedestrians, and the needs of emergency vehicles when planning and constructing roadway system improvements.

Policy Definition/Intent: This policy supports the design and construction of systems and facilities that accommodate multiple modes. It also supports consideration of the needs of emergency vehicles in the design and construction of system improvements.
Reference: Based on OTP (1992) Policy 1A (currently OTP 2006 Policy 1.2); TEA 21 Metropolitan Planning Factors F and G (currently SAFETEA-LU planning factors B and D).

TSI Roadway Policy #2: Motor Vehicle Level of Service

1. Use motor vehicle level of service standards to maintain acceptable and reliable performance on the roadway system. These standards shall be used for:
 a. Identifying capacity deficiencies on the roadway system.
 b. Evaluating the impacts on roadways of amendments to transportation plans, acknowledged comprehensive plans and land-use regulations, pursuant to the TPR (OAR 660-12-0060).
 c. Evaluating development applications for consistency with the land-use regulations of the applicable local government jurisdiction.

2. Acceptable and reliable performance is defined by the following levels of service under peak hour traffic conditions: Level of Service E within Eugene’s Central Area Transportation Study (CATS) area, and Level of Service D elsewhere.

3. Performance standards from the OHP shall be applied on state facilities in the Eugene-Springfield metropolitan area.

In some cases, the level of service on a facility may be substandard. The local government jurisdiction may find that transportation system improvements to bring performance up to standard within the planning horizon may not be feasible, and safety will not be compromised, and broader community goals would be better served by allowing a substandard level of service. The limitation on the feasibility of a transportation system improvement may arise from severe constraints including but not limited to environmental conditions, lack of public agency financial resources, or land use constraint factors. It is not the intent of TSI Roadway Policy #2: Motor Vehicle Level of Service to require deferral of development in such cases. The intent is to defer motor vehicle capacity increasing transportation system improvements until existing constraints can be overcome or develop an alternative mix of strategies (such as: land use measures, TDM, short-term safety improvements) to address the problem.

Policy Definition/Intent: Level of service is a concept that is used to assess roadway system performance and to describe operational conditions from the perspective of motorists. Detailed descriptions of LOS and its application are provided in Appendix B.

The policy sets standards for acceptable levels of roadway performance (LOS) and supports maintaining a system of streets to meet those standards. By defining acceptable levels of service, the policy provides direction for identifying roadway system deficiencies. It does not, however, determine what actions should be taken to address
deficiencies. Such actions are guided by the full range of RTP policies including policies on Land Use, TDM, Transportation System Improvements (TSI), and Transit.

For state highways, performance standards contained in the adopted Oregon Highway Plan are used to evaluate the need for roadway capacity improvements.

Reference: TransPlan (RTP) 1986 Plan Assumptions. Additions to policy based on advice from legal council.

TSI Roadway Policy #3: Coordinated Roadway Network

In conjunction with the overall transportation system, recognizing the needs of other transportation modes, promote or develop a regional roadway system that meets combined needs for travel through, within, and outside the region.

Policy Definition/Intent: The regional roadway system must meet the travel needs of motorists, transit users, bicyclists, pedestrians, and commercial vehicles. Characteristics of such a roadway system include adequate capacity and connections to roads entering the region. The RTP roadways will be coordinated with the Lane County, Eugene-Springfield and Coburg Transportation System Plan (TSP) roadways and ODOT corridor studies and facility plans. All roadway system improvements will also be consistent with other adopted policies in the RTP.

Reference: Based on TPR 660-12-020; TEA 21 Metropolitan Planning Factor E (currently SAFETEA-LU planning factor F).

TSI Roadway Policy #4: Access Management

Manage the roadway system to preserve safety and operational efficiency by adopting regulations to manage access to roadways and applying these regulations to decisions related to approving new or modified access to the roadway system.

Policy Definition/Intent: Access management is balancing access to developed land while ensuring movement of traffic in a safe and efficient manner. This policy supports local access management ordinances called for in the TPR.

The TPR (OAR 660-012-0045 (2) states: “Local governments shall adopt land use or subdivision ordinance regulations, consistent with applicable federal and state requirements, to protect transportation facilities, corridors, and sites for their identified functions. Such regulations shall include:

(a) Access control measures, for example, driveway and public road spacing, median control and signal spacing standards, which are consistent with the functional classification of roads and consistent with limiting development on rural lands to rural uses and densities;”

These regulations are adopted by individual jurisdictions. ODOT has adopted Access Management policies and regulations in the recently adopted Oregon Highway Plan and
OAR 734.051. To varying degrees, Eugene, Springfield, and Lane County address access management in current land use codes.

Reference: Joint Adopting Official review.

Transportation System Improvements: Transit Policies

Transit policies are designed to support improvement of the transit system to make it a more viable transportation alternative for a greater segment of the population. The policies focus on enhancements to the convenience of the transit system through improved facilities, more frequent service, and faster service. These policies are also intended to create a transit system that supports and is integrated with planned land use patterns.

TSI Transit Findings

1. The 2000 U.S. Census of Population reported that about 9 percent of all households in the Eugene-Springfield area did not own a vehicle; these residents have limited transportation choices.

2. Transit services are particularly important to the transportation disadvantaged population: persons who are limited in meeting their travel needs because of age, income, location, physical or mental disability, or other reasons. The Americans with Disabilities Act (ADA) requires fixed-route systems like (LTD to provide a comparable level of service to the elderly and persons with disabilities who are unable to successfully use the local bus service. LTD's Americans with Disabilities Act Paratransit Plan, 1994-1995 Update, January 18, 1995, was found to be in full compliance with the ADA by the Federal Transit Administration.

3. The role of urban public transit in meeting trip needs has increased within the metropolitan area since 1970. In 1971, there were 2,260 LTD passenger trips on a weekday and, in 2004, ridership had increased to 20,736 per day, or approximately 2% of all metropolitan trips. The Regional Travel Forecasting Model forecasts transit use to increase to 3.1 percent of all trips by 2035 with proposed RTP projects and policy implementation.

4. The Urban Rail Feasibility Study Eugene/Springfield Area (July 1995) concluded that projected 2015 ridership for an urban rail system was too low to be competitive with other cities seeking federal rail transit funding; and that BRT could significantly improve transit service for substantially less capital investment and lower operational costs than urban rail.

5. OHP policy supports investment in Park-and-Ride facilities as a cost-effective means to increase the efficient use of the existing transportation system.
TSI Transit Policy #1: Transit Improvements

| Improve transit service and facilities to increase the system’s accessibility, attractiveness, and convenience for all users, including the transportation disadvantaged population. |

Policy Definition/Intent: Continued improvements to the transit system, including enhancements to the existing transit service, exploration of transit fare alternatives that increase ridership and new and improved transit facilities for passengers, will make transit a more attractive transportation alternative and encourage increased use of transit. This policy also supports maintaining existing facilities in good condition.

Reference: Based on TEA 21 Metropolitan Planning Factor C.

TSI Transit Policy #2: Bus Rapid Transit

| Establish a Bus Rapid Transit (BRT) system composed of frequent, fast transit service along major corridors and neighborhood feeder service that connects with the corridor service and with activity centers, if the system is shown to increase transit mode split along BRT corridors, if local governments demonstrate support, and if financing for the system is feasible. |

Policy Definition/Intent: BRT is, in essence, the use of buses to emulate the positive characteristics of a rail system, but at a fraction of the cost of a rail system. The BRT system will include:

- Exclusive busways along the majority of each corridor,
- Faster boarding through low-floor, multiple door vehicles,
- Minimum ten minute frequency during peak hours,
- Increased convenience and comfort,
- Limited stops,
- Improved travel time through reduction of impact from normal traffic congestion through bus priority treatment
- A connected system of BRT corridor and neighborhood routes

BRT, when combined with other system improvement, land use, and demand management strategies, is expected to increase the share of riders who use public transportation. BRT is also expected to help the region maintain conformity with federal air quality standards. BRT, combined with nodal development, is a key strategy in the regions compliance with alternative performance measures for the Transportation Planning Rule. Commitment by the region to full system build out of BRT is essential to meeting the alternative performance measures. The full system will include 61 miles of BRT corridor service. The majority of each corridor will include exclusive busways. When funding or traffic conditions restrict implementation of exclusive busways within a corridor, priority should be given to improvements providing the greatest benefit to travel timesavings. The BRT strategy will be implemented to the extent that planning and engineering studies show that the system would increase the use of transit, is supported by
the community, and can be funded. As BRT is implemented, LTD, Springfield, Eugene, Lane County, and ODOT will consider neighborhood impacts when designing elements of specific segments.

Reference: Based on Decision Package, November 1996, Strategy 5; TEA 21 Metropolitan Planning Factor C.

TSI Transit Policy #3: Transit/High-Occupancy Vehicle Priority

Implement traffic management strategies and other actions, where appropriate and practical, that give priority to transit and other HOVs.

Policy Definition/Intent: Various traffic management techniques, such as transit signal priority, bus queue jumpers, and exclusive bus lanes, can be used to improve transit travel time, reduce operating costs, and make transit a more attractive transportation alternative. Implementation of priority treatment for transit and other HOVs must not impair bicycle and pedestrian mobility. Local jurisdictions will determine when and where it is appropriate to give priority to transit and HOVs.

Reference: Based on TransPlan 1986 Policy TSM3, AM2.

TSI Transit Policy #4: Park-and-Ride Facilities

Expand the Park-and-Ride system within the metropolitan area and nearby communities.

Policy Definition/Intent: Park-and-Ride lots provide access to the transit system for people who cannot conveniently access the bus system on foot. Common reasons for using Park-and-Ride lots are that there is no bus service near a person’s home, the nearby service is not convenient, or a car is needed before or after the bus trip (such as to drop a child off at day care). Regular Park-and-Ride users are almost always commuters (to work or to school) who use the service daily. The destination of Park-and-Ride customers is almost always to a location where parking is expensive and/or in short supply. Increased use of the Park-and-Ride system will reduce traffic congestion and parking demand in the city centers and other intensely developed areas. Expansion of the Park-and-Ride system in outlying communities will be consistent with the Lane County TSP and small city TSPs.

Reference: TransPlan 1986 Policy AM5, IC2.
Transportation System Improvements: Bicycle Policies

Bicycle policies address the need to improve the region’s bicycle system and associated facilities to increase the choice of modes available for travel in the region. The policies are focused on directing bicycle system improvements, such as expansion of the existing regional network, the provision of safety improvements, and the addition of adequate support facilities. The policies also respond to the region’s need to comply with federal and state requirements that call for a greater emphasis on the use of alternative modes of transportation, including bicycles.

TSI Bicycle Findings

1. In 1995, there were 126 miles of bikeways in the metropolitan area. Implementation of proposed RTP projects would approximately double the lane miles for bicycles.

 Over the past 20 years, Eugene and Springfield have built an extensive bikeway system. The focus over the next 20 years is on the construction of “Priority Bikeway Projects” which consist of those projects that are along an essential core route on which the overall system depends, fill in a critical gap in the existing bicycle system, or overcome a barrier where no other nearby existing or programmed bikeway alternatives exist, or significantly improve bicycle users safety in a given corridor.

2. OAR 660-012-0045 (3) requires local governments to adopt land use regulations to require bikeways along new and reconstructed arterial and major collector streets and to connect new development with nearby neighborhood activity centers and major destinations.

TSI Bicycle Policy #1: Bikeway System and Support Facilities

| Construct and improve the region’s bikeway system and provide bicycle system support facilities for both new development and redevelopment/expansion. |

Policy Definition/Intent: Over the past 20 years, local jurisdictions have invested in a system of designated bikeways that provide access to many regional destinations. This policy supports the continued construction of bikeway facilities that provide regional connectivity and access to neighborhoods, schools, and parks, as well as recreational, retail, and employment areas. The bicycle projects included in the RTP are significant components of the regional bikeway system because they fill gaps in the existing system, provide access to neighborhoods or activity centers, improve overall system safety, or overcome significant barriers, such as rivers and highways.

Bikeways include multiple-use paths, striped lanes or shoulders, and signed routes on local streets. In order to encourage walking and bicycling trips by those not currently using those modes and an overall increase in trips and safety for those modes, it is preferable, when practical, that bicycles and pedestrians be as physically separated as possible from the flow of motorized traffic. All streets in the metropolitan area should be designed to safely accommodate bicyclists. If a street cannot safely accommodate
bicycle travel and reconstruction is not feasible, an alternate parallel bikeway should be
designated. This policy also supports the construction of multiple-use bicycle/pedestrian
paths along the Willamette River within the Willamette River Greenway and along the
McKenzie River and other major drainageways where practicable. Land use activities
along these corridors should be done in a manner that allows the possibility of future
bikeway construction.

In conjunction with bikeway system improvements, adequate bicycle system support
facilities should be provided, including secure bicycle parking areas (e.g., covered racks,
cages, and lockers), signage, and lighting. In particular, bicycle support facilities should
be provided at government offices, downtowns, employment areas, shopping centers,
parks, libraries, athletic stadiums, and schools, and along heavily used bikeways.

Reference: Based on TPR 660-12-045(3 and 6).

TSI Bicycle Policy #2: Bikeways on Arterials and Collectors

Require bikeways along new and reconstructed arterial and major collector streets.

Policy Definition/Intent: In compliance with the TPR, this policy requires the
provision of bikeways, normally bike lanes, on arterial and major collector streets.
Bicycle lanes can be provided on existing streets through the reallocation of road space,
including narrowing motor vehicle travel lanes and removing on-street parking. In
special cases, circumstances such as safety issues or physical limitations may prevent the
provision of on-street bike lanes. In these cases, alternate parallel routes shall be
provided as part of the same project to ensure access to residences and services found on
the collector and arterial streets.

The 1999 Eugene Arterial and Collector Street Plan (ACSP) describes the public
involvement process in the design of Eugene projects, including adding bicycle lanes to
existing streets (pp. 44-45). When bike lanes are proposed to be added to existing streets,
staff would work with residents, property owners and the neighborhood association to
conduct a design charrette or similar process for citizen input. Various options would be
evaluated for implementing the bike lanes while enhancing the maximum amount of on-
street parking, and addressing other city and neighborhood goals. Design standards in the
ACSP would be used as desirable guidelines—for example, width of bicycle lanes and
parking areas, etc. The process would focus on reaching consensus on optimum design
for safety, mobility and livability.

Reference: Based on TransPlan (RTP) 1986 Policy I7; TPR 660-12-045(3)(b)(B); OTP
(1992) Policy 2D (currently OTP 2006 Policy 4.3), Action 2D.1, Eugene ACSP.
TSI Bicycle Policy #3: Bikeway Connections to New Development

| Require bikeways to connect new development with nearby neighborhood activity centers and major destinations. |

Policy Definition/Intent: This policy recognizes the importance of providing bicycle connectivity between new development, neighborhood activity centers, and major destinations. When new development occurs, connectivity to the regional bikeway system must be provided. In cases where the existing or planned street network does not adequately provide bicycle connectivity, paved bikeways should be provided within residential developments and should extend to neighborhood activity centers or to an existing bikeway system within one-half mile of residential developments. Major destinations may include, but are not limited to, nodal development centers, schools, shopping centers, employment centers, transit stations, and parks. This policy does not imply that a developer would be required to provide bikeways through undeveloped adjoining properties.

Reference: Based on TPR 660-12-045(3)(b).

TSI Bicycle Policy #4: Implementation of Priority Bikeway Miles

| Give funding priority (ideally within the first 3 to 5 years after adoption of TransPlan subject to available funding) to stand-alone bikeway projects that are included in the definition of “Priority Bikeway Miles” and that increase the use of alternative modes. |

Policy Definition/Intent: This policy supports consideration and programming of stand-alone “priority bikeway miles” bikeway facilities in the first 3-5 years following adoption of TransPlan. Stand-alone bike projects are those listed in TransPlan not associated with roadway projects (Multi-Use Paths Without Road Projects and On-Street Lanes or Routes Without Roadway Projects.)

A key alternative measure for demonstrating reduced reliance on the auto is the building of Priority Bikeway Miles. Priority bikeway projects consist of those projects that:

- Are along an essential core route on which the overall bicycle system depends; and
- Fill in a critical gap in the existing bicycle system; or
- Overcome a barrier where no other nearby existing or programmed bikeway alternatives exist (e.g., river, major street, highway); or
- Significantly improves bicycle users’ safety in a given corridor.

The intent of this policy is to maximize the impact of bicycle projects in the RTP by implementing the most important bike projects early in the period following adoption of the RTP. This policy also provides additional policy direction in support of Finance Policy #5: Short-Term Project Priorities.

Reference: Based on TPR 660-12-0040(2)(d). Also see Finance Policy #5.
Transportation System Improvements: Pedestrian Policies

Walking is still the most important mode of travel. All trips, whether by car, bus, or bike, involve at least two pedestrian trips: one at the beginning and one at the end. Without pedestrian facilities, the transportation system could not function. Pedestrian facilities are critical to provide access to neighborhood destinations, including schools, parks, recreation, and shopping. Pedestrian policies focus on closing gaps and improving the quality of the pedestrian system in the region. These policies are closely related to RTP land use policies that support pedestrian-oriented design.

TSI Pedestrian Findings

1. OAR 660-012-0045 (3) requires local governments to adopt land use regulations to provide for a pedestrian environment that is well integrated with adjacent land uses and designed to enhance the safety, comfort, and convenience of walking; a continuous pedestrian network with reasonably direct travel routes between destination points; and sidewalks along urban arterial and collector roadways, except freeways.

TSI Pedestrian Policy #1: Pedestrian Environment

Provide for a pedestrian environment that is well integrated with adjacent land uses and is designed to enhance the safety, comfort, and convenience of walking.

Policy Definition/Intent: This policy supports the provision of pedestrian connections between adjacent land uses, improved pedestrian access to transit stops and stations, safe and convenient pedestrian street crossings, and pedestrian amenities, including lighting. In more developed areas, such as downtowns, pedestrian design features improve the accessibility of destinations.

Reference: Based on TPR 660-12-045.

TSI Pedestrian Policy #2: Continuous and Direct Routes

Provide for a continuous pedestrian network with reasonably direct travel routes between destination points.

Policy Definition/Intent: This policy supports an active program to develop pedestrian pathways (e.g., sidewalks), especially in proximity to major activity centers. A continuous pedestrian network is free of gaps and deadends and overcomes physical barriers that inhibit walking. Direct routes between destination points are important because out-of-direction travel discourages walking. “Reasonably direct” means either a route that does not deviate unnecessarily from a straight line or a route that does not involve a significant amount of out-of-direction travel for likely users.

Reference: Based on TPR 660-12-045(3)(d)(B).
TSI Pedestrian Policy #3: Sidewalks

Construct sidewalks along urban area arterial and collector roadways, except freeways.

Policy Definition/Intent: This policy supports the construction of sidewalks during roadway construction or reconstruction, as well as the prioritized retrofitting of corner sidewalks with curb ramps, and infill of missing sidewalk sections. Specific design standards for sidewalks along collectors and arterials and local street sidewalk policies and requirements are established by local jurisdictions.

Reference: Based on TPR 660-12-045(3)(b)(B).

Transportation System Improvements: Goods Movement Policies

The RTP supports the integration of goods movement considerations into the regional transportation planning process. Goods movement of all types makes a significant contribution to the region’s economy and wealth and contributes to residents’ quality of life. Truck routes, rail corridors, aviation facilities, and pipelines must all function cohesively if the region’s goods movement system is to operate efficiently. There are no maritime port or navigation facilities in the RTP study area. The region seeks to maintain and enhance its competitive advantage in freight distribution through efficient use of a flexible, seamless, and multi-modal transportation network that offers competitive choices for freight movement. Goods movement is directly supported by TSI System-Wide and TSI Roadway policies.

TSI Goods Movement Findings

1. The OTP recognizes that goods movement of all types makes a significant contribution to the region’s economy and wealth and contributes to residents’ quality of life. OTP Policy 3A promotes a balanced freight transportation system that takes advantage of the inherent efficiencies of each mode.

2. There are no maritime port or navigation facilities in the MPO area.

3. Goods movement is directly supported by system-wide and roadway transportation system improvements.

TSI Goods Movement Policy #1: Freight Efficiency

Support reasonable and reliable travel times for freight/goods movement in the Central Lane MPO region.

Policy Definition/Intent: This policy supports a high degree of mobility for goods movement within and through the region in freight transportation corridors and high-
quality access between freight transportation corridors and the region’s markets, inter-modal facilities, and industrial developments. This policy supports the development of collaborative strategies between public agencies and freight transportation providers to improve the efficiency of roadway, rail, air, and pipeline goods movement.

Reference: Based on OTP (1992) Policy 3A (currently OTP 2006 Policy 3.1); TEA 21 Metropolitan Planning Factor E (currently SAFETEA-LU planning factors D and F).

Transportation System Improvements: Other Modes Policies

This section sets forth policy for other modes, including air, rail, and inter-city bus service. Collaboration between the public and private sectors is imperative for effective implementation of policies that directly impact private transportation providers. These other modes are supported by the TSI System-Wide policies.

TSI Other Modes Findings

1. The Eugene Airport is located outside the Eugene urban growth boundary (UGB) to protect it from incompatible development as well as to reduce airport-related impacts on development within the UGB. The area of the Airport designated Airport Operations in the Eugene Airport Master Plan receives municipal water, wastewater, fire, and police services.

2. The *Pacific Northwest High Speed Rail Southern Terminus Study*, Wilbur Smith Associates, 1995, found that rail-related infrastructure improvements needed along the corridor include improved signals, grade crossings, track, and depots. These improvements are important to the success of high speed rail because Eugene-Springfield is the southern terminus to the high speed rail corridor.

3. OTP (1992) Policy 1F (currently OTP 2006 Policy 1.3) provides for a transportation system with connectivity among modes within and between urban areas, with ease of transfer among modes and between local and state transportation systems.

TSI Other Modes Policy #1: Eugene Airport

Support public investment in the Eugene Airport as a regional facility and provide land use controls that limit incompatible development within the airport environs. Continue to use the Eugene Airport Master Plan as the guide for improvements of facilities and services at the airport.

Policy Definition/Intent: The Eugene Airport/Mahlon Sweet Field is the major airport that provides commercial passenger, cargo, mail, and general aviation services to the metropolitan area. This airport also provides major services to Lane County residents outside of the metropolitan area. The airport is located outside the urban growth boundary (UGB), to protect the airport from incompatible development or development...
that would have incompatible operational characteristics, as well as to reduce airport-related impacts on development within the airport environs.

Reference: Based on TPR 660-12-045(2)(c); *Metro Plan* 1987 Transportation Element Policies 8-17.

TSI Other Modes Policy #2: High Speed Rail Corridor

Support provision of rail-related infrastructure improvements as part of the Cascadia High Speed Rail Corridor project.

Policy Definition/Intent: This policy demonstrates local jurisdiction support for improvements to the passenger rail system. High speed rail corridor development is a cooperative effort involving the states of Oregon and Washington, the Province of British Columbia, and Burlington Northern Railroad, Southern Pacific Railroad, and Amtrak. Rail-related infrastructure improvements needed along the corridor include improved signals, grade crossings, track, and depots. As the corridor’s southern terminus, the provision of a station and train servicing facilities and connections to other transportation modes are issues for the Central Lane MPO region that contribute to the overall success of the corridor.

TSI Other Modes Policy #3: Passenger Rail and Bus Facilities

Support improvements to the passenger rail station and inter-city bus terminals that enhance usability and convenience.

Policy Definition/Intent: This policy promotes the growth of inter-city bus and passenger rail facilities and services. Amtrak provides passenger rail service through the region and Greyhound is the primary provider of inter-city bus service. Intermodal connections play an important role in the usability and convenience of passenger rail and bus service.

Finance Policies

The finance policies will guide the development and allocation of funding for transportation services, facilities, and projects. Characteristics of the desired transportation finance system include:
1. Incorporation of federal, state, local, and private funding;
2. Funding for operations and maintenance, preservation, and modernization of the transportation system for all transportation modes and jurisdictions;
3. Funding for incentives to implement the nodal development strategy;
4. Funding for the development, implementation, and operations of TDM programs;
5. Funding for efficient and effective system improvements (OTP Policy 4B);
6. Funding for the improvement of collector and arterial streets within the Eugene, Springfield and Coburg UGBs to urban standards;
7. Modernization and extension of the user pays concept to reflect the full costs and benefits of uses of the transportation system and to reinforce the relationship between the user fees and uses of the related revenues (OTP Policy 4C); and
8. Provision of equity among competing users, payers, beneficiaries, and providers of the transportation system (OTP Policy 4F).

A cost-effective transportation system will provide adequate levels of accessibility and mobility to users, while minimizing the overall cost of the system and therefore reducing the need for public investment. Certain situations require increased investments in one area to save a greater amount of capital cost in another area. However, TransPlan places emphasis on the preservation and efficient use of existing facilities as the preferred approach to provide an adequate transportation system.

Finance Findings

1. Transportation costs are rising while revenues are shrinking and this trend is expected to continue. The 1999 Oregon Highway Plan (as amended through January 2006) estimated total 20-year highway needs of about $29 billion, but projected revenues of only about $14 billion.

2. The RTP estimates that operations, maintenance, and preservation of the metropolitan transportation system will cost approximately $1.77 billion in 2011 dollars to maintain at current levels to the year 2035, while revenues for this purpose, including a regularly increasing state gas tax or other comparable source of revenue at the state level, and federal forest receipts at current non-guaranteed levels after the guarantee expires, are estimated at $1.61 billion, leaving a conservative estimated shortfall of about $160 million over the planning period before the implementation of fiscal constraint strategies.

3. The projects proposed in the RTP demonstrate that nearly all of the region’s travel over the next 20+ years will rely on existing streets, highways, and bicycle and pedestrian facilities, emphasizing the importance of preservation and maintenance of these facilities.
4. Historically, the State Highway Trust Fund (SHTF) and Federal Forest Receipts, significant sources of transportation revenues, have funded operations and maintenance and preservation of the regional transportation system. Currently, SHTF revenues are not increasing with inflation and Federal Forest Receipts are declining.

5. Funding allocations of State cigarette tax revenues designated for special need transit services are guided by the Special Transportation Fund Advisory Committee per ORS 391.800-391.830 and OAR 732-05, 732-10, 732-20 governing the Special Transportation Fund Program.

6. Currently, systems development charge (SDC) methodologies charge new development only for the city’s portion of the arterial-collector system; state and county facilities within the metropolitan area are excluded from the calculation of SDC rates; and assessments only partially fund projects that are improving existing facilities to urban standards.

7. Under SAFETEA-LU), 10 percent of Surface Transportation Program funds allocated to the state must be used for transportation enhancement activities, including construction of facilities for bicycles and pedestrians, but a local match is required. State funding for bikeways is primarily limited to ODOT Highway Funds, which are used mainly for adding bicycle lanes to existing and new streets, but may be used for other bicycle projects in the right-of-way. Local jurisdictions may also fund bikeways through the local road construction and maintenance budget and from general funds, park district funds, special bond levies, and SDCs. Regarding transit, the RTP anticipates that discretionary federal grant funds will pay for up to 80 percent of the capital cost of the BRT system, based on trends in federal funding for LTD capital projects over the last ten years.

Finance Policy #1: Adequate Funding

Support development of a stable and flexible transportation finance system that provides adequate resources for transportation needs identified in the RTP.

Policy Definition/Intent: This policy supports development of a stable set of revenue sources to adequately fund the full range of regional transportation needs for all modes, including operations and maintenance, preservation, and modernization. This policy also supports the creation of funding for incentives to implement nodal development and funding for the development, implementation, and operation of TDM programs.

The current structure and level of transportation funding is inadequate to meet the needs of either the individual publicly funded modes of transportation or the system as a whole. Many transportation revenue sources are restricted to expenditure on particular types of projects either by mode or activity. Local jurisdictions may seek changes in current restrictions on transportation funding. The current shortfall in revenues available for road preservation activities is evidence of a mismatch between revenue availability and need.
Finance Policy #2: Operations, Maintenance, and Preservation

Operate and maintain transportation facilities in a way that reduces the need for more expensive future repair.

Policy Definition/Intent: This policy emphasizes the importance of adequate resources to operate and maintain the existing transportation system at a level that avoids more costly reconstruction. Preservation and efficient use of existing facilities is preferred versus expanding the transportation system when there is a choice. The impact of this policy is limited by the fact that some transportation revenue sources are dedicated to modernization activities.

Nearly all of the region’s travel during the next 20+ years and beyond will rely on the existing system of streets, highways, and bicycle and pedestrian facilities. Therefore, it is critical to ensure that current and future funding and resource allocation decisions address the ongoing operation, maintenance, and preservation of this system. To minimize costs, it is important to maintain and preserve the system at a level such that at least 80 percent of the system’s pavement condition is rated fair or better. If this happens, more expensive preservation activities, such as reconstruction of a facility, are postponed.

Reference: Based on TransPlan 1986 Policy I4; Decision Package, November 1996, Strategy 8; TEA 21 Metropolitan Planning Factor G (currently SAFETEA-LU planning factors G and H).

Finance Policy #3: Prioritization of State and Federal Revenue

Set priorities for investment of Oregon Department of Transportation (ODOT) and federal revenues programmed in the region’s Transportation Improvement Program (TIP) to address safety and major capacity problems on the region’s transportation system.

Policy Definition/Intent: This policy supports the development and application of a process for prioritizing regional system improvements funded by state and federal revenues. Safety and major capacity issues will be emphasized in this process. Local jurisdiction funding sources, including federal payments to the County road fund, are allocated through local agency Capital Improvement Programs (CIPs) and are not subject to a regional prioritization process.

Reference: Based on TransPlan 1986 Policies I2, I3, and I13; TEA 21 Metropolitan Planning Factor F (currently SAFETEA-LU planning factors B and D); Decision Package, November 1996, Strategy 11.
Finance Policy #4: New Development

| Recommend that new development pay for its capacity impact on the transportation system. |

Policy Definition/Intent: This policy supports expanding SDC methodologies to address new developments’ impacts on state, county, and transit facilities. Currently, SDC methodologies adopted by the cities of Eugene and Springfield charge new development only for the City’s portion of the arterial-collector system. Additional charges to mitigate onsite or adjacent impacts may be necessary.

Reference: Finance Committee.

Finance Policy #5: Short-Term Project Priorities

| Consider and include among short-term project priorities, those facilities and improvements that support mixed-use, pedestrian-friendly nodal development and increased use of alternative modes. |

Policy Definition/Intent: This policy supports consideration and programming of facilities and improvements that support nodal development and the increased use of alternative modes. Examples of such investments include funding incentives for implementation of nodal development, funding of TDM programs, and improvements made to the transit and bike systems.

Reference: Based on TPR 660-12-0040(2)(d).

Finance Policy #6: Eugene-Specific Finance Policy

| The City of Eugene will maintain transportation performance and improve safety by improving system efficiency and management before adding capacity to the transportation system under Eugene’s jurisdiction. |

Policy Definition/Intent: Use the following priorities for developing the Eugene Capital Improvement Program (CIP) and Eugene projects for the Metropolitan Transportation Improvement Program (MTIP). Implement higher priority measures unless a lower priority measure is clearly more cost-effective or unless it clearly better supports safety, growth management, or other livability and economic viability considerations. Plans must document the justification which supports using lower priority measures before higher priority measures. This policy does not apply to any other jurisdiction or agency.

1. **Protect the existing system.**

 The highest priority is to preserve the functionality of the existing transportation system by means such as access management, comprehensive plans,
transportation demand management, improved traffic operations, and alternative modes.

2. Improve the efficiency and capacity of existing transportation facilities.
 The second priority is to make minor improvements to existing highway facilities such as widening highway shoulders or adding auxiliary lanes, providing better access for alternative modes (e.g., bike lanes, sidewalks, bus shelters), extending or connecting local streets, and making other off-system improvements.

3. Add capacity to the existing system.
 The third priority is to make major improvements to existing transportation facilities such as adding general purpose lanes and making alignment corrections to accommodate legal-sized vehicles.

4. Add new facilities to the system.
 The lowest priority is to add new transportation facilities such as a new roadway.

Reference: Eugene City Council action.
CHAPTER THREE

PLAN IMPLEMENTATION
Chapter 3: Plan Implementation

Table of Contents
Chapter Overview ... 2
Part One: Capital Investment Actions .. 3
 Summary of Needs Analysis .. 3
 Capital Investment Action Implementation Process ... 4
 Overview of Capital Investment Action Project Lists ... 7
 Capital Investment Actions: Roadway Projects ... 11
 Capital Investment Actions: Transit Projects ... 20
 Capital Investment Actions: Bicycle Projects ... 22
Part Two: Financial Plan .. 31
 Federal Regulations for Financial Constraint ... 31
 Future Cost and Revenue Estimate Methodologies ... 32
 Transit System Costs and Revenues .. 34
 Bicycle and Pedestrian System Costs and Revenues ... 35
 Flexibility of Federal Surface Transportation Revenues .. 36
 Assessment of Revenue Shortfall .. 36
 Strategies to Address Revenue Shortfall ... 39
 Development of Constrained Plan .. 43
Part Three: Regional Transportation Plan Amendment Process .. 51
 Requirements ... 51
 Categories of Amendments ... 51
 Consistency between local Transportation System Plans and the Regional Transportation Plan ... 51
Part Four: Air Quality Conformity .. 52
 Requirements ... 52
 Analysis ... 53
Part Five: Planning and Program Actions ... 54
 Land Use Planning and Program Actions .. 55
 Transportation Demand Management Planning and Program Actions 60
 Transportation System Improvements Planning and Program Actions 66
Part Six: Parking Management Plan .. 74
 TPR Requirements for Parking Space Reduction ... 74
 Capital Investment Actions .. 74
 Planning and Program Actions .. 75
Part Seven: Intelligent Transportation System Operations and Implementation Plan 76
 Overview of Intelligent Transportation Systems ... 76
 ITS Projects ... 76
 ITS Planning and Program Actions .. 77
Chapter Overview

Chapter Three is comprised of actions that implement the regional transportation policy framework set forth in Chapter Two and elements related to plan implementation that are required by federal and state legislation.

- **Part One: Capital Investment Actions** presents transportation system improvement (TSI) projects for motor vehicles, transit, bicycles, pedestrians, goods movement, and other modes that require significant capital investment.

- **Part Two: Financial Plan** describes total Capital Investment Action project costs, anticipated revenues from existing sources, the expected gap in revenues, potential yields from new revenue sources, factors to consider in determining project priorities, and the Financially Constrained RTP.

- **Part Three: Air Quality Conformity** follows the Financial Plan. This section summarizes the air quality conformity analysis required by federal legislation.

- **Part Four: Planning and Program Actions** presents a range of regionally significant planning, administrative, and support actions that might be used to implement RTP policies. The Planning and Program Actions are not adopted, meaning they are not binding or limiting to any implementing jurisdiction.

- **Part Five: Parking Management Plan** presents parking management strategies and demonstrates how the region will achieve the state requirement to reduce parking spaces per capita by 10 percent.
Part One: Capital Investment Actions

Capital Investment Actions are TSI projects for motor vehicles, transit, bicycles, pedestrians, goods movement, and other modes that require significant capital investment. Chapter Two TSI System-Wide Policy #1 Transportation Infrastructure Protection and Management calls for “…the protection and management of transportation facilities for all modes…in a way that sustains their long-term capacity and function.” This policy is combined with RTP policies and implementation actions for transportation demand management (TDM), land use, and transit. Its purpose is to guide the management of existing and future transportation infrastructure in ways that will reduce the need to construct new roadway capacity improvements. The effects of these management policies and implementation actions on travel demand have been included in the RTP technical analysis that was conducted to identify existing and future transportation system needs. As a result, the Capital Investment Actions Project Lists reflect the RTP’s balanced approach to long-range transportation planning. The projects selected for inclusion as Financially Constrained Capital Investment Actions establish a network of facilities that meet overall transportation needs for the planning period.

Summary of Needs Analysis

Transportation needs for the Central Lane area were assessed using standard methods typically employed in regional transportation planning. The analysis of needs was based on population and employment growth forecasts consistent with statewide forecasts. The population and employment forecasts were used to establish overall demand for transportation.

In the development of the 2001 TransPlan, a wide range of strategies were identified to address this demand, including land use, TDM, and TSI strategies. Different combinations of these strategies were formulated as alternative plan concepts and tested using a computer-based travel-forecasting model. The alternative plan concepts ranged from a Base Case consisting of trends to an alternative designed to meet the vehicle miles traveled reduction targets of the Transportation Planning Rule. These strategies are reflected in this Regional Transportation Plan.

The alternatives development and evaluation included consideration of state and local needs consistent with the Oregon Transportation Plan, Metro Plan, and state and local improvement programs. Surveys were conducted to provide data on travel behavior and input on a wide range of alternative strategies.

Transportation needs associated with the movement of goods and services were identified as part of the technical analysis and public involvement process. Commercial vehicle movements on the regional transportation network were estimated using the regional travel-forecasting model. The segments of the national highway system within the MPO area were used as part of this analysis.

The needs of the transportation disadvantaged are assessed under a separate planning process leading to the development of the Metro-Area Paratransit Plan. This plan has been adopted by the Lane Council of Governments (LCOG), the Eugene-Springfield Metropolitan Planning Organization (MPO), and Lane Transit District (LTD). Strategies and recommendations in this
plan are consistent with the RTP update. Implementation of this plan is carried out in coordination with implementation of the RTP through the Metropolitan Transportation Improvement Program (MTIP). The Paratransit plan provides strategies for improvements to the existing RideSource service. Amendments to the RTP will be made as necessary to maintain consistency between the two planning efforts.

Capital Investment Action Implementation Process

The Financially Constrained Capital Investment Action project lists will be adopted, making them legislatively binding. However, the specific timing, design, and financing provisions of the RTP’s recommended projects are not formally adopted. The project lists are not intended to serve as an exclusive long-range programming document in the manner of the MTIP, nor do they formally approve or commit any funding. Illustrative maps that illustrate the regional roadway, transit, and bicycle projects are included in Appendix A.

After a project has been identified as a Capital Investment Action in the RTP, the responsible agency begins the process of project refinement and programming. Programming refers to development of local agency capital improvement programs (CIPs), the Central Lane Metropolitan Transportation Improvement Program (MTIP) at the regional level, and the Oregon Department of Transportation’s (ODOT) Four-Year Statewide Transportation Improvement Program (STIP). Projects that use federal funds or that are regionally significant for air quality purposes must be included in the MTIP and the STIP. Some funding sources in the RTP are beyond immediate local control, such as state and federal funding. Local input into state and federal funding programs is advisory, and, therefore, the availability of funds for particular projects may not necessarily coincide with the RTP.

The CIP’s are approved by local and appointed officials on an annual basis. Public hearings are held prior to adoption to allow the public to comment on the proposed expenditures. Media advertisements, press releases, and notifying interested parties are used to inform the public about the CIP public hearings.

In the recent past, ODOT and the Oregon Transportation Commission have endeavored to place a higher degree of decision-making on state projects and policies at the local level. Local policy advice has been facilitated through the formation of Area Commissions on Transportation (ACT). These area commissions are chartered by the Oregon Transportation Commission and are meant to provide a more direct communication link between local communities and the OTC.

The formation of an ACT in Lane County was completed in November, 2010. As a new ACT, formal processes for interaction with the Central Lane MPO have yet to be established. Prior to the formation of the LaneACT, the process in place for prioritizing projects on a countywide basis, including projects adopted as part of the RTP was as follows:

1. MPC adopted Coburg-Eugene-Springfield metro area priorities based on TPC and CAC recommendations and public input (prior to this meeting, MPC members
optionally get direction on project priorities from their respective Boards and Councils).

2. MPC forwarded the metro priority list to the Lane County Board of County Commissioners with the understanding that the Board of County Commissioners would not reorder the metro priorities, only blend rural priorities into the list.

3. Lane County Public Works, on behalf of the Board of County Commissioners, sent notices to small cities, ports or other organizations explaining that the County would be assembling a county-wide ODOT STIP priority list and requesting input.

4. Small cities, etc. sent project priorities to Lane County Public Works.

5. The Transportation Planning Committee (TPC) developed a “blended” rural and metro list for review. Lane County Public Works staff or small city administrators would represent the non-metro jurisdictions.

6. Lane County representatives took the countywide priority list to MPC for review and discussion (prior to this meeting, MPC members optionally get direction on the countywide project priorities from their respective Boards and Councils).

7. The Board of County Commissioners adopted a blended county-wide priority list.

8. One County Commissioner served as the Lane County area representative at the ODOT Region 2 roundtable priority setting meeting. This representative may be one of the two Lane County representatives to MPC.

As of the development of this RTP, the MPO and the LaneACT are developing the process by which they will interact while developing priorities and other input to the Oregon Department of Transportation and the Oregon Transportation Commission.

MTIP projects were also prioritized by the Metropolitan Policy Committee following the process outlined above and adopted into the STIP. Federal public involvement guidelines state that there must be reasonable opportunity for public comment prior to approval. Media advertisements, press releases, and notifying interested parties are used to inform the public about the MTIP public hearings. ODOT conducts a public meeting in the Eugene-Springfield area to provide information and gather comments from the public prior to adoption of the STIP by the Oregon Transportation Commission (OTC). The public is invited to make comments directly to the OTC prior to adoption.

Projects proposed for amendment into the RTP from local jurisdictions through local agency TSP or CIP processes are subject to the decision-making and public involvement processes of the respective agencies, as required by applicable federal, state and local requirements. The allocation of locally-controlled funding is decided by the policymakers of the individual jurisdiction, and not at the MPO policy level.

Project refinement and programming can vary depending on the complexity of the project. Depending upon the scope of the project, environmental analyses and public hearings may be needed. Engineering requirements and right-of-way needs vary depending on the type of project. After right-of-way is acquired and final plans and contract documents are prepared, construction
can begin. Figure 5 describes the typical process taken between the time a transportation need is identified and when project construction is complete. **Major projects** (complex, higher cost projects such as many Added Freeway Lanes or New Arterial Links or Interchanges that require significant project refinement and a full environmental process), can take as long as ten years to complete (more if there are several project phases). **Minor projects** (simple, lower-cost projects such as many Urban Standards projects, New Collectors, or Studies that require little project refinement and minimal environmental process) may be completed within two to five years.

While local jurisdictions vary in their public involvement process, each agency has developed a program for involving the citizens affected by transportation projects and provide opportunity for public input on project alternatives and design decisions. Depending on the size or impact of the project, the citizen involvement process for project implementation may include advisory committees, neighborhood meetings, open houses, mailings to affected property owners and interested parties, or public hearings.
Overview of Capital Investment Action Project Lists
The Capital Investment Actions are presented in five tables/lists:

1a. Financially Constrained Capital Investment Actions: Roadway Projects
1b. Illustrative Capital Investment Actions: Roadway Projects
2. Financially Constrained Capital Investment Actions: Transit Projects
2b. Illustrative Capital Investment Actions: Transit Projects
3a. Financially Constrained Capital Investment Actions: Bicycle Projects
3b. Illustrative Capital Investment Actions: Bicycle Projects

Projects are listed in the MPO’s Regional Transportation Plan as part of a long-range planning effort. To meet state requirements, additional action by local agencies may be required prior to programming and proceeding with implementation of projects. Listing of projects in the RTP does not necessarily constitute fulfillment of the requirements of the Oregon Transportation Planning Rule.

Project Implementation Phases
The Roadway and Bicycle project lists are subdivided into Financially Constrained and Illustrative implementation phases. Illustrative projects are projects for which a need has been identified but for which the funding, at this time, is not reasonably expected to be available. The illustrative projects may fall within the plan horizon, or they may be projects anticipated beyond the plan horizon. These projects are not part of the financially constrained plan. However, these projects could be implemented if additional funding is identified.

As described in the Capital Investment Action Implementation Process on page 4, in all cases, inclusion of a project in a particular phase does not represent a commitment to complete the project during that phase. It is expected that some projects may be accelerated and others postponed due to changing conditions, funding availability, public input, or more detailed study performed during programming and budgeting processes.

The columns/fields of information common to each table are defined below.

Column 1: Name
The name of the Capital Investment Action helps to identify the location of the project. Most Capital Investment Actions are named after the roadway on which the project is located.

Column 2: Geographic Limits
The geographic limits define the geographic beginning and ending points of the project.

Column 3: Description
The description field provides a summary overview of each Capital Investment Action.

Column 4: Jurisdiction
Project jurisdictions shown in the RTP identify the agency or agencies that presently have responsibility for the street, highway, or bicycle facility; have indicated a commitment to assist in
a project; or have an intergovernmental agreement to assume some responsibility for a road during the planning period.

In some cases, multiple jurisdictions are indicated if sections of a project are the responsibility of different agencies. In other cases, multiple jurisdictions are shown because changes in jurisdictional responsibility are expected or because more than one agency may participate in the project’s funding. Because project timing and financing is not binding, the jurisdictional listing does not represent a commitment by a particular agency to construct that project.

LTD is the lead agency in all transit projects and thus the Jurisdiction field is not provided on the Transit Projects lists.

Column 5: Estimated Cost
This field provides a determination of planning cost estimates. The estimated costs are not precise engineering estimates, but are used as planning estimates to assist in determining the financial impacts. Cost estimates are provided in 2011 dollars, consistent with revenue estimates used in the plan. Projects proposed for inclusion on a financially constrained project list must have up-to-date complete scope and cost estimate information available in order to be considered during the financial constraint process. ODOT cost estimates for the 2011 RTP update considered the project scope, current full-cost estimates for activities necessary to implement each project, adjusting cost estimates to reflect current 2011 dollars.

Providing both the cost and revenue estimates in current 2011 dollars allows for an analysis of the financial constraint of the plan in current, or today’s, dollars. However, very few, if any, of the projects listed in the plan will actually be built in 2011. Cost estimates for individual projects may be estimated in future year dollars by multiplying the 2011 dollar cost estimate by the current statewide inflation rate assumption of 3.1 percent per year over the number of years from 2011 to the future year when it is assumed that the project may be built. For example, if a project is listed in the plan at a 2011 estimated cost of $1,000,000, and there is an assumption that the project will be built in 2016, then you can estimate the 2016 dollar cost of the project by multiplying $1,000,000 by the 3.1 percent annual compounded inflation each year for five years. Mathematically, this example would be calculated as $1,000,000*(1.031^5). As another example, illustrating the potential future cost of the projects should any be delayed to the plan horizon of 2035 can be calculated by multiplying the 2011 estimated cost by (1.031^24) – the 3.1 percent inflation factor compounded over the 24 year horizon of the plan.

Column 6: Length
The project length is calculated in miles for roadway and bicycle projects. The project length is one of the factors used in determining the estimated cost. This field is not provided on the Transit Projects list.

Column 7: Number
The project number uniquely identifies each project. For roadway and bicycle projects, the project number facilitates locating the project on the maps for roadways and bicycles in Appendix A. The project numbers are based on eleven geographic districts:

- Projects 100-199 are located in District 1 (Central Eugene).
- Projects 200-299 are located in District 2 (Southeast Eugene).
Projects 300-399 are located in District 3 (Southwest Eugene).
Projects 400-499 are located in District 4 (Northwest Eugene-Bethel/Danebo).
Projects 500-599 are located in District 5 (River Road/Santa Clara).
Projects 600-699 are located in District 6 (Northeast Eugene-Willakenzie/Ferry Street Bridge).
Projects 700-799 are located in District 7 (Northwest Springfield-Gateway/Hayden Bridge).
Projects 800-899 are located in District 8 (Central Springfield).
Projects 900-999 are located in District 9A (Central/East Springfield).
Projects 0-99 are located in District 9B (East Springfield).
Projects 1000-1099 are located in District 10 (Coburg).

In some instances, a roadway project is coordinated with an on-street bicycle project. Where the roadway project and the bicycle project are contiguous, the project numbers are identical.

The following map of Geographic Districts is useful for determining the geographic location of roadway and bicycle projects.
Figure 5
Coburg-Eugene-Springfield Metropolitan Area
Geographic Districts Map

1. Central Eugene (Eug CBD)
2. SE Eugene (SE Eug)
3. SW Eugene (SW Eug)
4. NW Eugene-Bethel/Danebo (NW Eug)
5. River Road/Santa Clara (RR/SC)
6. NE Eugene-Willakenzie/Ferry Street Bridge (NE Eug-Will/FSB)
7. NW Springfield-Gateway/Hayden Bridge (NW Spr-Gwy/HB)
8. Central Springfield (SPR CBD)
9A. Central/East Springfield (Central/E Spr)
9B. East Springfield (E Spr)
10. Coburg

Key
- District Boundaries
- Urban Growth Boundary
- RTP Study Area
Capital Investment Actions: Roadway Projects

The following project categories are included in the Capital Investment Action Roadway Projects list:

1. **New Arterial Link or Interchange** – These projects add new links or interchanges to the arterial or freeway systems in the region. Projects typically consist of any required right-of-way acquisition, general roadway construction, and addition of pedestrian and bicycle facilities either adjacent or parallel to the roadway.

2. **Added Freeway Lanes or Major Interchange Improvements** – These projects add capacity to existing freeways or freeway interchanges in the region. Projects typically consist of added freeway lanes or interchange reconstruction and expansion.

3. **Arterial Capacity Improvements** – These projects add capacity to existing arterials in the region. Projects typically consist of improvements to traffic control, the safety of the corridor, additional turn lanes, or reconstruction, including additional lanes.

4. **New Collectors** – All new collector projects will generally be constructed to the implementing jurisdiction’s urban standards.

5. **Urban Standards** – Projects with this description consist of rebuilding an existing roadway to upgrade it to urban standards, with curbs, sidewalks, and bicycle facilities.

6. **Study** – These types of projects are detailed studies that identify and offer solutions to specific problems related to multi-modal traffic flow and safety along the corridor. Improvements identified by these studies are expected to be added to the RTP project list through the amendment process.

The Capital Investment Action Roadway Projects are part of the regional roadway system. The regional roadway system is comprised of streets with a functional classification of arterial or collector. A map that shows functional classifications of the regional roadway system is provided in Appendix A. Functional classification is the process by which streets and highways are grouped into classes, or systems, according to the character of service they are intended to provide. Other criteria used to identify roadways that make up the regional roadway system include service and connection to regional facilities and the amount of existing and projected use by various modes.

Several major transportation corridors within the Central Lane MPO area require additional, corridor-level analyses to address existing and future capacity, safety, and operational problems over the next 20-30 years. In some cases, the costs of addressing anticipated problems on these corridors are included in the Capital Investment Action project lists, with the understanding that some of these projects are placeholders pending further study and public input. In other cases, the specific project-level solutions have not yet been proposed, so the project list includes only the estimated cost of the corridor study itself. Specific projects that are developed as a result of the corridor-level analyses will require an amendment to the RTP in order to be added to the Capital Investment Action project lists.
Many of the corridors that require further study are state facilities, while others are local jurisdiction facilities. While each corridor presents unique challenges, all of them have at least two or more of the following characteristics in common:

- Use as the means for cross-regional travel, often connecting to important regional attractions (shopping, airport, downtowns, freight transfer sites, etc.);
- High traffic volume and traffic congestion;
- Need for both short- and long-range investments;
- Issues requiring complex, multi-project, high-cost solutions;
- Project scale that may require major investment studies or environmental impact studies, including extensive public involvement; and
- Long lead times necessary before construction can begin.

The following corridors are anticipated to require further study and major investments:

- Interstate 5
- Interstate 105/Oregon 126 (Eugene-Springfield Highway)
- Beltline Road (Highway 99 to Interstate 5)
- Main Street/McKenzie Highway (20th Street to 70th Street)
- McVay Highway (Franklin Boulevard to 30th Avenue interchange)
- Franklin Boulevard (Glenwood section)
- West 11th Avenue (Beltline to Chambers)
- Coburg Road (Crescent to Oakway)
- 18th Avenue (Bertelsen to Agate)
- Southeast Eugene corridor (Willamette, Amazon Parkway, Patterson/Hilyard, from 13th to 33rd Avenue)
- Beltline Road/Pioneer Parkway (Beltline to Hayden Bridge Road)
- Ferry Street Bridge (long-range capacity needs)
- South Bank Street Improvements (Mill Street to Hilyard Street)
- West Eugene Transportation Improvements

In the case of the West 11th Avenue and Coburg Road corridors (items #7 and #8), studies are proposed to address access, safety, and operational problems. In the case of 18th Avenue and the Southeast Eugene corridors (items #9 and #10), studies are proposed to address major capacity issues, as well as safety, access, and operational problems. In the case of Interstate 5 (item #1), a comprehensive study of I-5 interchanges from the interchange with I-105 south to the interchange with Highway 58 is proposed to address major capacity, safety, access and operational problems. The extent of further study that each corridor requires will depend on the level of analysis completed to date, the level of specificity of any proposed solutions, and the level of environmental analysis required for a project to proceed. Examples of typical studies prepared prior to construction of a system improvement include the Beltline/I-5 refinement study, the Ferry Street Bridge Study and the Jasper Extension design study.
RTP Table 1a - Financially Constrained
Capital Investment Actions: Roadway Projects

<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic Limits</th>
<th>Description</th>
<th>Primary Jurisdiction</th>
<th>Estimated Cost</th>
<th>Length</th>
<th>RTP #</th>
</tr>
</thead>
<tbody>
<tr>
<td>30th Ave Off Ramp to Gonyea Road</td>
<td>MP 0.5 to MP 1.0</td>
<td>Reconstruct the existing NE clover leaf off ramp to a folded diamond off ramp. This project would eliminate the traffic weaving at the cloverleaf ramps. With improved ramp access, more traffic is likely to use the ramp instead of making left at the congested Eldon Schaffer Dr intersection.</td>
<td>Lane County</td>
<td>$544,000</td>
<td>0.33</td>
<td>201</td>
</tr>
<tr>
<td>Eugene-Springfield Highway (SR-126) at Main Street</td>
<td>Construct interchange</td>
<td>ODOT $50,000,000</td>
<td>0</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eugene-Springfield Highway (SR-126) at 52nd Street</td>
<td>Construct interchange</td>
<td>ODOT $40,000,000</td>
<td>0</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centennial Boulevard/Industrial Avenue 28th Street to 35th Street</td>
<td>Construct 3-lane urban facility</td>
<td>Springfield $4,350,000</td>
<td>0.5</td>
<td>930</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project Category Subtotal $94,894,000
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic Limits</th>
<th>Description</th>
<th>Primary Jurisdiction</th>
<th>Estimated Cost</th>
<th>Length</th>
<th>RTP #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta/ Beltline Interchange</td>
<td>Interim/safety improvements; replace/revise existing ramps; widen Delta Highway bridge to 5 lanes</td>
<td>Lane County</td>
<td>$8,800,000</td>
<td>0.25</td>
<td>638</td>
<td></td>
</tr>
<tr>
<td>North Eugene Transportation Improvements</td>
<td>Enhance safety and mobility within N. Eugene Area, specifically for Beltline Corridor</td>
<td>ODOT</td>
<td>$60,000,000</td>
<td>1.76</td>
<td>506</td>
<td></td>
</tr>
<tr>
<td>I-5</td>
<td>Unit 3 and Unit 4. Reconstruct interchange and I-5, upgrade Beltline Road East to 5 lane urban facility.</td>
<td>ODOT</td>
<td>$110,000,000</td>
<td>0</td>
<td>606</td>
<td></td>
</tr>
</tbody>
</table>

Project Category Subtotal $178,800,000
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic Limits</th>
<th>Description</th>
<th>Primary Jurisdiction</th>
<th>Estimated Cost</th>
<th>Length</th>
<th>RTP #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob Straub Parkway</td>
<td>57th Street to Jasper Road@ Brand S Rd</td>
<td>Phase 2: Widen to 4-lane plus a median</td>
<td>Lane County, Springfield</td>
<td>$4,000,000</td>
<td>1.9</td>
<td>66</td>
</tr>
<tr>
<td>Eugene-Springfield Highway (SR-126)</td>
<td>@ Mohawk Boulevard Interchange</td>
<td>Add lanes on ramps</td>
<td>ODOT</td>
<td>$310,000</td>
<td>0.68</td>
<td>821</td>
</tr>
<tr>
<td>W. 11th Avenue</td>
<td>Green Hill Road to Terry Street</td>
<td>Upgrade to 5-lane urban facility</td>
<td>ODOT, Eugene</td>
<td>$20,000,000</td>
<td>1.51</td>
<td>333</td>
</tr>
<tr>
<td>Main Street</td>
<td>@ 48th Street</td>
<td>Traffic control improvements</td>
<td>Springfield</td>
<td>$290,000</td>
<td>0</td>
<td>69</td>
</tr>
<tr>
<td>Main Street</td>
<td>@ Mountaingate Drive</td>
<td>Traffic control improvements</td>
<td>Springfield</td>
<td>$290,000</td>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>42nd Street</td>
<td>@ Marcola Road</td>
<td>Traffic control improvements</td>
<td>Springfield</td>
<td>$290,000</td>
<td>0</td>
<td>712</td>
</tr>
<tr>
<td>Harlow Road</td>
<td>@ Pheasant Boulevard</td>
<td>Traffic control improvements</td>
<td>Springfield</td>
<td>$290,000</td>
<td>0</td>
<td>744</td>
</tr>
<tr>
<td>Gateway Street</td>
<td>@ Harlow Road</td>
<td>Traffic control improvements</td>
<td>Springfield</td>
<td>$2,910,000</td>
<td>0.5</td>
<td>785</td>
</tr>
<tr>
<td>Gateway/ Beltline Intersection</td>
<td>International Way to Postal Way</td>
<td>Improve intersections and realign Gateway</td>
<td>Springfield</td>
<td>$30,000,000</td>
<td>0.9</td>
<td>789</td>
</tr>
<tr>
<td>Centennial Boulevard</td>
<td>Prescott Lane to Mill Street</td>
<td>Reconstruct section to 4-5 lanes</td>
<td>Springfield</td>
<td>$1,450,000</td>
<td>0.3</td>
<td>818</td>
</tr>
<tr>
<td>Q Street Intersection Improvements</td>
<td>Intersection of Q Street and 5th</td>
<td>Intersection improvements</td>
<td>Springfield</td>
<td>$1,170,000</td>
<td>0.5</td>
<td>828</td>
</tr>
<tr>
<td>Glenwood Blvd</td>
<td>Franklin Blvd to I-5</td>
<td>Upgrade to 3 to 5 lane urban facility</td>
<td>Springfield</td>
<td>$2,210,000</td>
<td>0.5</td>
<td>836</td>
</tr>
<tr>
<td>Centennial Boulevard</td>
<td>@ 28th Street</td>
<td>Traffic control improvements</td>
<td>Springfield</td>
<td>$290,000</td>
<td>0</td>
<td>924</td>
</tr>
<tr>
<td>Centennial Boulevard</td>
<td>@ 21st Street</td>
<td>Traffic control improvements</td>
<td>Springfield</td>
<td>$290,000</td>
<td>0</td>
<td>927</td>
</tr>
<tr>
<td>S 42nd Street at Daisy Street</td>
<td>S. 42nd St/ Daisy Street</td>
<td>Traffic control improvements</td>
<td>Springfield</td>
<td>$290,000</td>
<td>0</td>
<td>951</td>
</tr>
<tr>
<td>42nd Street at Highway 126 Westbound Ramp</td>
<td>42nd st/Hwy 126</td>
<td>Traffic control improvements</td>
<td>Springfield, ODOT</td>
<td>$500,000</td>
<td>0</td>
<td>799</td>
</tr>
<tr>
<td>I-5</td>
<td>@ City of Coburg interchange (Phase 1)</td>
<td>Construct local network urban improvements west side of I-5 only.</td>
<td>ODOT</td>
<td>$13,000,000</td>
<td>0</td>
<td>1003</td>
</tr>
</tbody>
</table>

Project Category Subtotal $77,580,000
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic Limits</th>
<th>Description</th>
<th>Primary Jurisdiction</th>
<th>Estimated Cost</th>
<th>Length</th>
<th>RTP #</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. 13th Avenue (Future Collector E)</td>
<td>Bertelsen Road to Bailey Hill Road</td>
<td>New major collector</td>
<td>Eugene</td>
<td>$4,172,000</td>
<td>1</td>
<td>318</td>
</tr>
<tr>
<td>Roosevelt Extension (Future Collector F)</td>
<td>Royal Avenue to Terry Street</td>
<td>New major collector</td>
<td>Eugene</td>
<td>$4,520,000</td>
<td>0.7</td>
<td>429</td>
</tr>
<tr>
<td>Legacy Extension (Future Collector H)</td>
<td>Avalon Street to Royal Avenue</td>
<td>New major collector</td>
<td>Eugene</td>
<td>$3,594,000</td>
<td>0.5</td>
<td>435</td>
</tr>
<tr>
<td>Future Collector J</td>
<td>Awbrey Lane to Enid Road</td>
<td>New major collector</td>
<td>Eugene</td>
<td>$3,338,000</td>
<td>0.8</td>
<td>441</td>
</tr>
<tr>
<td>Haviture Way/ Heath Dr (Future Collector O)</td>
<td>Barger Drive to Excalibur Lane</td>
<td>New neighborhood collector</td>
<td>Eugene</td>
<td>$540,000</td>
<td>0.13</td>
<td>447</td>
</tr>
<tr>
<td>Colton Way (Future Collector P)</td>
<td>Avalon Street to Roosevelt Ext (Future Collector F)</td>
<td>New neighborhood collector</td>
<td>Eugene</td>
<td>$5,572,000</td>
<td>1.11</td>
<td>449</td>
</tr>
<tr>
<td>Hyacinth Street</td>
<td>Brotherton Avenue to Argon Avenue</td>
<td>New neighborhood collector</td>
<td>Eugene</td>
<td>$1,391,000</td>
<td>0.08</td>
<td>537</td>
</tr>
<tr>
<td>Avengale Dr (Future Collector A)</td>
<td>870 feet east of Walton Lane to County Farm Road @ Wildish Lane</td>
<td>New neighborhood collector</td>
<td>Eugene</td>
<td>$2,921,000</td>
<td>0.7</td>
<td>651</td>
</tr>
<tr>
<td>McKenzie- Gateway Loop collector</td>
<td>MLK Jr. Parkway to Beltline/Baldy View/Deadmond Ferry</td>
<td>Collector loop to serve McKenzie/Gateway area</td>
<td>Private Funding, Springfield</td>
<td>$6,000,000</td>
<td>0.57</td>
<td>756</td>
</tr>
<tr>
<td>79th Street</td>
<td>Thurston Road to Main Street</td>
<td>New 2 to 3-lane collector</td>
<td>Springfield</td>
<td>$1,450,000</td>
<td>0.37</td>
<td>18</td>
</tr>
<tr>
<td>Future Collector C1</td>
<td>Linda Lane - Bob Straub Parkway</td>
<td>New 2 to 3-lane urban collector</td>
<td>Springfield</td>
<td>$1,960,000</td>
<td>0.5</td>
<td>33</td>
</tr>
<tr>
<td>Future Collector C2</td>
<td>Jasper Road - Mountaingate</td>
<td>New 2 to 3-lane urban collector</td>
<td>Springfield</td>
<td>$5,080,000</td>
<td>1.3</td>
<td>36</td>
</tr>
<tr>
<td>Future Collector C3</td>
<td>Bob Straub Parkway - East Natron</td>
<td>New 2 to 3-lane urban collector</td>
<td>Springfield</td>
<td>$2,740,000</td>
<td>0.7</td>
<td>39</td>
</tr>
<tr>
<td>Future Collector C4</td>
<td>East-west in Mid-Natron site</td>
<td>New 2 to 3-lane urban collector</td>
<td>Springfield</td>
<td>$2,350,000</td>
<td>0.6</td>
<td>42</td>
</tr>
<tr>
<td>Future Collector C5</td>
<td>Loop Rd in South Natron Site</td>
<td>New 2 to 3-lane urban collector</td>
<td>Springfield</td>
<td>$3,910,000</td>
<td>1</td>
<td>45</td>
</tr>
<tr>
<td>Name</td>
<td>Geographic Limits</td>
<td>Description</td>
<td>Primary Jurisdiction</td>
<td>Estimated Cost</td>
<td>Length</td>
<td>RTP #</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
<td>--</td>
<td>----------------------</td>
<td>----------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Future Collector C6</td>
<td>Mt Vernon Road - Bob Straub Parkway</td>
<td>New 2 to 3-lane urban collector</td>
<td>Springfield</td>
<td>$3,910,000</td>
<td>1</td>
<td>48</td>
</tr>
<tr>
<td>Future Collector C7 Glacier Drive</td>
<td>North-south in mid-Natron site 48th Street to 55th Street</td>
<td>New 2 to 3-lane urban collector Develop new, 2-lane urban facility</td>
<td>Springfield</td>
<td>$2,190,000</td>
<td>0.56</td>
<td>51</td>
</tr>
<tr>
<td>Glacier Drive</td>
<td>Forest Ridge to Mt Vernon Road</td>
<td>New 3-lane collector</td>
<td>Springfield</td>
<td>$3,520,000</td>
<td>0.43</td>
<td>78</td>
</tr>
<tr>
<td>Mt Vernon Road</td>
<td>Weyerhaeuser Haul Rd to Maountaingate Drive</td>
<td>Extend existing street as 2-lane collector</td>
<td>Springfield</td>
<td>$780,000</td>
<td>0.2</td>
<td>81</td>
</tr>
<tr>
<td>54th Street</td>
<td>Main Street to Daisy Street</td>
<td>New 2-lane collector</td>
<td>Springfield</td>
<td>$1,090,000</td>
<td>0.28</td>
<td>87</td>
</tr>
<tr>
<td>19th Street</td>
<td>Hayden Bridge Road to Yolanda Avenue</td>
<td>Extend existing street as 2-lane collector</td>
<td>Springfield</td>
<td>$1,290,000</td>
<td>0.33</td>
<td>703</td>
</tr>
<tr>
<td>37th Street</td>
<td>Ambleside Drive to Marcola Road</td>
<td>Extend existing street as 2-lane collector per Local Street Plan.</td>
<td>Springfield</td>
<td>$2,000,000</td>
<td>0.63</td>
<td>709</td>
</tr>
<tr>
<td>V Street</td>
<td>31st Street to Marcola Road</td>
<td>New 2 to 3-lane collector</td>
<td>Springfield</td>
<td>$2,540,000</td>
<td>0.65</td>
<td>777</td>
</tr>
<tr>
<td>Yolanda Avenue</td>
<td>31st Street to 34th Street</td>
<td>Extend existing street as 2-lane collector</td>
<td>Springfield</td>
<td>$780,000</td>
<td>0.2</td>
<td>783</td>
</tr>
<tr>
<td>North Gateway Collector/Maple Island Rd</td>
<td>Sports Way to International Way Collector to serve Campus Industrial parcels</td>
<td>Springfield</td>
<td>$1,750,000</td>
<td>63</td>
<td>798</td>
<td></td>
</tr>
<tr>
<td>19th Avenue</td>
<td>Glenwood Boulevard to Henderson Avenue</td>
<td>2-3 lane collector</td>
<td>Springfield</td>
<td>$2,340,000</td>
<td>0.2</td>
<td>861</td>
</tr>
<tr>
<td>Franklin Riverfront Collector</td>
<td>Franklin Blvd/McVay to west portion of Franklin riverfront</td>
<td>Collector to serve Glenwood redevelopment area along riverfront north of Franklin Blvd.</td>
<td>Springfield</td>
<td>$6,500,000</td>
<td>0.7</td>
<td>897</td>
</tr>
<tr>
<td>48th Street</td>
<td>Aster Street to Daisy Street</td>
<td>Extend existing street as 2-lane collector</td>
<td>Springfield</td>
<td>$430,000</td>
<td>0.3</td>
<td>901</td>
</tr>
<tr>
<td>Project Category Subtotal</td>
<td></td>
<td></td>
<td></td>
<td>$81,318,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Geographic Limits</td>
<td>Description</td>
<td>Primary Jurisdiction</td>
<td>Estimated Cost</td>
<td>Length</td>
<td>RTP #</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>----------------------</td>
<td>----------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Agate Street</td>
<td>31st Avenue to Black Oak Road</td>
<td>Upgrade to 2-lane urban facility</td>
<td>Eugene</td>
<td>$905,000</td>
<td>0.39</td>
<td>215</td>
</tr>
<tr>
<td>Dillard Road</td>
<td>E. Amazon Drive to UGB</td>
<td>Upgrade to urban facility</td>
<td>Eugene</td>
<td>$7,021,000</td>
<td>1.34</td>
<td>298</td>
</tr>
<tr>
<td>South Willamette Street</td>
<td>Spencer Crest Drive to UGB</td>
<td>Upgrade to urban facility</td>
<td>Eugene</td>
<td>$495,000</td>
<td>0.2</td>
<td>299</td>
</tr>
<tr>
<td>Bertelsen Road</td>
<td>18th Avenue to Bailey Hill Road</td>
<td>Upgrade to 2 to 3-lane urban facility</td>
<td>Eugene</td>
<td>$2,369,000</td>
<td>0.6</td>
<td>315</td>
</tr>
<tr>
<td>Willow Creek Road</td>
<td>W. 18th Avenue to UGB</td>
<td>Upgrade to 2-lane urban facility</td>
<td>Eugene</td>
<td>$2,457,000</td>
<td>1.06</td>
<td>342</td>
</tr>
<tr>
<td>Bailey Hill Road</td>
<td>Bertelsen to UGB</td>
<td>Upgrade to urban facility</td>
<td>Eugene</td>
<td>$3,962,000</td>
<td>1.2</td>
<td>343</td>
</tr>
<tr>
<td>Bethel Drive</td>
<td>Highway 99 to Roosevelt Blvd</td>
<td>Upgrade to 2-lane urban facility</td>
<td>Eugene</td>
<td>$7,386,000</td>
<td>1.68</td>
<td>414</td>
</tr>
<tr>
<td>Summit Avenue</td>
<td>Fairmount to Floral Hill Dr.</td>
<td>Upgrade to urban facility</td>
<td>Eugene</td>
<td>$1,854,000</td>
<td>0.3</td>
<td>287</td>
</tr>
<tr>
<td>Royal Avenue</td>
<td>Green Hill Road to Terry Street</td>
<td>Upgrade to 3-lane urban facility</td>
<td>Eugene</td>
<td>$7,512,000</td>
<td>1.01</td>
<td>481</td>
</tr>
<tr>
<td>Division Avenue</td>
<td>Division Place to River Avenue</td>
<td>Upgrade to 2 to 3-lane urban facility</td>
<td>Eugene</td>
<td>$2,658,000</td>
<td>0.86</td>
<td>509</td>
</tr>
<tr>
<td>Goodpasture Island Road</td>
<td>Delta Highway to Happy Lane</td>
<td>Upgrade to 2-lane urban facility</td>
<td>Eugene</td>
<td>$511,000</td>
<td>0.19</td>
<td>664</td>
</tr>
<tr>
<td>Jeppesen Acres Road</td>
<td>Gilham Road to Providence Street</td>
<td>Upgrade to 2-lane urban facility</td>
<td>Eugene</td>
<td>$1,423,000</td>
<td>0.35</td>
<td>670</td>
</tr>
<tr>
<td>Van Duyn Road</td>
<td>Western Drive to Harlow Road</td>
<td>Reconstruct to 2-lane urban facility</td>
<td>Eugene</td>
<td>$579,000</td>
<td>0.25</td>
<td>696</td>
</tr>
<tr>
<td>Highway 99</td>
<td>Roosevelt Boulevard to Garfield Street</td>
<td>Upgrade to urban facility</td>
<td>ODOT</td>
<td></td>
<td>1.14</td>
<td>148</td>
</tr>
<tr>
<td>Fox Hollow Road</td>
<td>Donald Street to UGB (Christensen Road)</td>
<td>Upgrade to 2-lane urban facility</td>
<td>Eugene, Lane County</td>
<td>$4,402,000</td>
<td>0.86</td>
<td>245</td>
</tr>
<tr>
<td>Green Hill Road</td>
<td>Airport Road to Barger Drive</td>
<td>Rural widening and intersection modifications</td>
<td>Lane County</td>
<td>$3,150,000</td>
<td>2</td>
<td>485</td>
</tr>
<tr>
<td>Hunsaker Lane / Beaver Street</td>
<td>River Road to Division Avenue</td>
<td>Upgrade to 2-lane urban facility</td>
<td>Lane County</td>
<td>$3,590,000</td>
<td>1.14</td>
<td>527</td>
</tr>
<tr>
<td>Wilkes Drive</td>
<td>River Road to River Loop 1</td>
<td>Upgrade to 3-lane urban facility</td>
<td>Lane County</td>
<td>$3,024,000</td>
<td>0.93</td>
<td>554</td>
</tr>
<tr>
<td>Game Farm Road South</td>
<td>Beltline Road to Harlow Road</td>
<td>Upgrade to 2-lane urban facility</td>
<td>Lane County</td>
<td>$3,000,000</td>
<td>0.93</td>
<td>737</td>
</tr>
<tr>
<td>Hayden Bridge Road / 23rd St</td>
<td>Yolanda Avenue to Marcola Road</td>
<td>Reconstruct to 2-lane urban facility</td>
<td>Lane County</td>
<td>$5,824,000</td>
<td>1.78</td>
<td>747</td>
</tr>
</tbody>
</table>

Project Category: Urban Standards
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic Limits</th>
<th>Description</th>
<th>Primary Jurisdiction</th>
<th>Estimated Cost</th>
<th>Length</th>
<th>RTP #</th>
</tr>
</thead>
<tbody>
<tr>
<td>31st Street</td>
<td>Hayden Bridge Road to U Street</td>
<td>Upgrade to 2 to 3-lane urban facility</td>
<td>Lane County</td>
<td>$1,700,000</td>
<td>0.58</td>
<td>765</td>
</tr>
<tr>
<td>Green Hill Road</td>
<td>Barger Drive to West 11th Avenue</td>
<td>Upgrade to 2 to 3-lane urban facility</td>
<td>Lane County, Eugene</td>
<td>$8,400,000</td>
<td>2.27</td>
<td>454</td>
</tr>
<tr>
<td>County Farm Road</td>
<td>North-to-South Section</td>
<td>Upgrade to 3-lane urban facility</td>
<td>Lane County, Eugene</td>
<td>$3,078,000</td>
<td>0.62</td>
<td>631</td>
</tr>
<tr>
<td>County Farm Road</td>
<td>West-to-East Section</td>
<td>Upgrade to 2-lane urban facility</td>
<td>Lane County, Eugene</td>
<td>$2,418,000</td>
<td>0.53</td>
<td>632</td>
</tr>
<tr>
<td>Laura Street</td>
<td>Old Laura Street to Scotts Glen Drive</td>
<td>Widen to 3-lane urban facility</td>
<td>Lane County, Springfield</td>
<td>$1,025,000</td>
<td>0.4</td>
<td>750</td>
</tr>
<tr>
<td>Aspen Street</td>
<td>Centennial Boulevard to West D Street</td>
<td>Reconstruct to 2 to 3-lane urban facility</td>
<td>Lane County, Springfield</td>
<td>$1,456,000</td>
<td>0.44</td>
<td>809</td>
</tr>
<tr>
<td>48th Street</td>
<td>G Street to Main Street</td>
<td>Upgrade to 2-lane urban facility</td>
<td>Springfield</td>
<td>$1,040,000</td>
<td>0.48</td>
<td>3</td>
</tr>
<tr>
<td>52nd Street</td>
<td>Eugene-Springfield Highway (SR 126) to G Street</td>
<td>Upgrade to 2-lane urban facility</td>
<td>Springfield</td>
<td>$430,000</td>
<td>0.2</td>
<td>6</td>
</tr>
<tr>
<td>79th Street</td>
<td>Main Street to Glacier Drive</td>
<td>Upgrade to 2 lane urban facility</td>
<td>Springfield</td>
<td>$1,770,000</td>
<td>0.46</td>
<td>20</td>
</tr>
<tr>
<td>G Street</td>
<td>48th Street to 52nd Street</td>
<td>Upgrade to 2-lane urban facility</td>
<td>Springfield</td>
<td>$670,000</td>
<td>0.31</td>
<td>54</td>
</tr>
<tr>
<td>Thurston Road</td>
<td>72nd Street to UGB</td>
<td>Upgrade to urban facility</td>
<td>Springfield</td>
<td>$1,770,000</td>
<td>0.61</td>
<td>98</td>
</tr>
<tr>
<td>42nd Street</td>
<td>Marcola Road to Railroad Tracks</td>
<td>Reconstruct to 3-lane urban facility</td>
<td>Springfield</td>
<td>$2,980,000</td>
<td>1.03</td>
<td>713</td>
</tr>
<tr>
<td>Baldy View Lane/ North link</td>
<td>Deadmond Ferry Road to RiverBend</td>
<td>Upgrade to urban standards</td>
<td>Springfield</td>
<td>$2,000,000</td>
<td>0.28</td>
<td>715</td>
</tr>
<tr>
<td>Deadmond Ferry Road</td>
<td>International Way to McKenzie River</td>
<td>Upgrade to urban standards</td>
<td>Springfield</td>
<td>$1,590,000</td>
<td>0.73</td>
<td>724</td>
</tr>
<tr>
<td>28th Street</td>
<td>Centennial Boulevard to Main Street</td>
<td>Widen/ provide sidewalks and bike lanes; provide intersection and signal improvements at Main Street</td>
<td>Springfield</td>
<td>$1,520,000</td>
<td>0.7</td>
<td>909</td>
</tr>
<tr>
<td>35th Street</td>
<td>Olympic Street to Commercial</td>
<td>Upgrade to 3-lane urban facility</td>
<td>Springfield</td>
<td>$1,330,000</td>
<td>0.46</td>
<td>918</td>
</tr>
<tr>
<td>Commercial Street</td>
<td>35th Street to 42nd Street</td>
<td>Upgrade to 3-lane urban facility</td>
<td>Springfield</td>
<td>$2,340,000</td>
<td>0.81</td>
<td>933</td>
</tr>
<tr>
<td>S. 28th Street</td>
<td>Main Street to Millrace</td>
<td>Upgrade to 2 to 3-lane urban facility</td>
<td>Springfield</td>
<td>$2,900,000</td>
<td>0.67</td>
<td>945</td>
</tr>
<tr>
<td>21st Street</td>
<td>D Street to Main Street</td>
<td>Upgrade to urban facility</td>
<td>Springfield</td>
<td>$1,170,000</td>
<td>0.2</td>
<td>962</td>
</tr>
<tr>
<td>Name</td>
<td>Geographic Limits</td>
<td>Description</td>
<td>Primary Jurisdiction</td>
<td>Estimated Cost</td>
<td>Length</td>
<td>RTP #</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Project Category Subtotal</td>
<td></td>
<td></td>
<td></td>
<td>$101,709,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Geographic Limits</td>
<td>Description</td>
<td>Primary Jurisdiction</td>
<td>Estimated Cost</td>
<td>Length</td>
<td>RTP #</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>--</td>
<td>----------------------</td>
<td>----------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>18th Avenue</td>
<td>Bertelsen Road to Agate Street</td>
<td>Corridor study to determine safety and capacity improvements</td>
<td>Eugene</td>
<td>$310,000</td>
<td>4.71</td>
<td>118</td>
</tr>
<tr>
<td>Chambers Street</td>
<td>8th Avenue to 18th Avenue</td>
<td>Corridor Study to Determine Improvements</td>
<td>Eugene</td>
<td>$310,000</td>
<td>0.8</td>
<td>136</td>
</tr>
<tr>
<td>Willamette Street/Amazon</td>
<td>13th Avenue to 33rd Avenue</td>
<td>Corridor study to determine improvements</td>
<td>Eugene</td>
<td>$600,000</td>
<td>5.55</td>
<td>187</td>
</tr>
<tr>
<td>Road/Patterson Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hilyard Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coburg Road</td>
<td>Crescent Avenue to Oakway Road</td>
<td>Access management/safety-operational study</td>
<td>Eugene</td>
<td>$124,000</td>
<td>2.24</td>
<td>619</td>
</tr>
<tr>
<td>Beltline Highway</td>
<td>River Rd to Coburg Rd</td>
<td>D-STIP Development Work</td>
<td>ODOT</td>
<td>$7,000,000</td>
<td>3.46</td>
<td>555</td>
</tr>
<tr>
<td>I-5 Interchange Study</td>
<td>I-105 to Highway 58</td>
<td>Comprehensive study of I-5</td>
<td>ODOT, Springfield</td>
<td>$2,000,000</td>
<td>6</td>
<td>250</td>
</tr>
<tr>
<td>Beltline Highway</td>
<td>Roosevelt Boulevard to W. 11th Ave</td>
<td>Study</td>
<td>ODOT, Eugene</td>
<td>$500,000</td>
<td>1.14</td>
<td>312</td>
</tr>
<tr>
<td>Main St. and 52nd St./Hwy</td>
<td>52nd to Main</td>
<td>Interchange Plans</td>
<td>ODOT, Springfield</td>
<td>$250,000</td>
<td>1.5</td>
<td>96</td>
</tr>
<tr>
<td>126 Int.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eugene-Springfield Hwy.</td>
<td>I-5 to Main</td>
<td>Facility Plan</td>
<td>ODOT, Springfield</td>
<td>$750,000</td>
<td>6.5</td>
<td>835</td>
</tr>
<tr>
<td>Franklin Blvd.</td>
<td>Jenkins Dr. to Mcvay Rail Trustle</td>
<td>Facility Plan / NEPA</td>
<td>Springfield</td>
<td>$1,300,000</td>
<td>1.2</td>
<td>802</td>
</tr>
<tr>
<td>Main Street/Highway 126</td>
<td>I-5 to UGB</td>
<td>Access management plan</td>
<td>Springfield, ODOT</td>
<td>$150,000</td>
<td>6</td>
<td>838</td>
</tr>
<tr>
<td>Project Category Subtotal</td>
<td></td>
<td></td>
<td></td>
<td>$13,294,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Geographic Limits</td>
<td>Description</td>
<td>Primary Jurisdiction</td>
<td>Estimated Cost</td>
<td>Length</td>
<td>RTP #</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------------</td>
<td>--</td>
<td>----------------------</td>
<td>----------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Eugene Nodal Development</td>
<td>Various Locations</td>
<td>Differential Nodal Development Infrastructure Cost*</td>
<td>Eugene</td>
<td>$2,500,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planning</td>
<td>Various Locations</td>
<td>Planning for implementation of nodal development zoning</td>
<td>Eugene, Springfield</td>
<td>$6,200,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project Category Subtotal $8,700,000

Financially Constrained Roadway Projects $556,295,000
Project Category: New Arterial Link or Interchange

<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic Limits</th>
<th>Description</th>
<th>Primary Jurisdiction</th>
<th>Estimated Cost</th>
<th>Length</th>
<th>RTP #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beaver Street Arterial</td>
<td>Hunsaker Lane to Wilkes Drive</td>
<td>R.O.W Acquisition. General construction.</td>
<td>Lane County</td>
<td>$6,000,000</td>
<td>0.84</td>
<td>503</td>
</tr>
<tr>
<td>Division Avenue</td>
<td>Beaver Street to Delta Highway</td>
<td>Construct new bridge with up to 4 lanes over the Willamette River</td>
<td>Lane County</td>
<td>$32,000,000</td>
<td>0.89</td>
<td>512</td>
</tr>
<tr>
<td>Irving Road @ NW Expressway</td>
<td>Gansborough entrance to Prairie Road</td>
<td>Construct overpass over NW Expressway and railroad. Signalize access on north side.</td>
<td>Lane County</td>
<td>$7,000,000</td>
<td>0.3</td>
<td>530</td>
</tr>
</tbody>
</table>

Project Category Subtotal $45,000,000
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic Limits</th>
<th>Description</th>
<th>Primary Jurisdiction</th>
<th>Estimated Cost</th>
<th>Length</th>
<th>RTP #</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-5</td>
<td>@ Willamette River/ Franklin Boulevard Interchange, @ Glenwood Interchange</td>
<td>Interchange reconstruction to create one full interchange to improve operations and safety, reconstruct ramps and bridges to modern standards, and provide for 6 lanes on I-5.</td>
<td>ODOT</td>
<td>$45,000,000</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>I-105</td>
<td>Washington/ Jefferson Street Bridge</td>
<td>Add lane to 6th Ave. off-ramp</td>
<td>ODOT</td>
<td>$6,200,000</td>
<td>0.25</td>
<td>151</td>
</tr>
<tr>
<td>I-105</td>
<td>Washington/ Jefferson Street Bridge</td>
<td>Extend third NB lane over bridge to Delta Highway exit ramp</td>
<td>ODOT</td>
<td>$8,400,000</td>
<td>0.75</td>
<td>154</td>
</tr>
<tr>
<td>I-5</td>
<td>30th Avenue/McVay Highway I-105 to Highway 58 (Goshen)</td>
<td>Interchange reconstruction to improve operations and safety, reconstruct ramps and bridges to modern standards, and provide for 6 lanes on I-5.</td>
<td>ODOT</td>
<td>$65,000,000</td>
<td>5.66</td>
<td>257</td>
</tr>
<tr>
<td>Beltline Highway</td>
<td>Roosevelt Boulevard to W. 11th Ave</td>
<td>Enhance safety and mobility within N. Eugene Area, specifically for Beltline Corridor.</td>
<td>ODOT, Eugene</td>
<td>$25,000,000</td>
<td>1.14</td>
<td>312</td>
</tr>
<tr>
<td>Eugene-Springfield Highway (SR-126)</td>
<td>Pioneer Parkway/ Q Street</td>
<td>Interchange improvements</td>
<td>ODOT</td>
<td>$21,700,000</td>
<td>0</td>
<td>727</td>
</tr>
<tr>
<td>Eugene-Springfield Highway (SR-126)</td>
<td>I-5 to Mohawk Boulevard</td>
<td>Widen to 6 lanes</td>
<td>ODOT</td>
<td>$29,000,000</td>
<td>2.6</td>
<td>728</td>
</tr>
<tr>
<td>I-5</td>
<td>@ City of Coburg interchange (Phase 2)</td>
<td>Interchange improvements</td>
<td>ODOT</td>
<td>$23,000,000</td>
<td>0</td>
<td>1004</td>
</tr>
</tbody>
</table>

Project Category Subtotal
$223,300,000
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic Limits</th>
<th>Description</th>
<th>Primary Jurisdiction</th>
<th>Estimated Cost</th>
<th>Length</th>
<th>RTP #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Franklin Blvd.</td>
<td>Alder Street to Walnut Street</td>
<td>Upgrade to multiway blvd with 2 vehicular lanes in each direction, two EmX lanes, and a planted median</td>
<td>Eugene</td>
<td>$16,000,000</td>
<td>1</td>
<td>119</td>
</tr>
<tr>
<td>Bob Straub Parkway</td>
<td>@ Jasper Rd and UP Mainline</td>
<td>Construct grade-separation over Jasper Rd and UP Mainline</td>
<td>Lane County</td>
<td>$10,000,000</td>
<td>0.3</td>
<td>67</td>
</tr>
<tr>
<td>Springfield Main Street</td>
<td>Springfield bridges to 21st Street</td>
<td>Convert Springfield Main Street to 2-way traffic</td>
<td>Springfield</td>
<td>$3,000,000</td>
<td>1.6</td>
<td>803</td>
</tr>
<tr>
<td>Springfield 2-way S. ‘A’ Street</td>
<td>Springfield bridges to 21st Street</td>
<td>Convert Springfield S. ‘A’ Street to 2-way traffic</td>
<td>Springfield</td>
<td>$6,000,000</td>
<td>1.6</td>
<td>801</td>
</tr>
</tbody>
</table>

Project Category Subtotal $35,000,000
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic Limits</th>
<th>Description</th>
<th>Primary Jurisdiction</th>
<th>Estimated Cost</th>
<th>Length</th>
<th>RTP #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jasper Road</td>
<td>S. 42nd Street to Bob Straub Parkway</td>
<td>Upgrade to 2 to 3-lane urban facility</td>
<td>Lane County, Springfield</td>
<td>$6,501,000</td>
<td>3.5</td>
<td>60</td>
</tr>
<tr>
<td>McVay Highway</td>
<td>I-5 to Franklin Boulevard</td>
<td>Upgrade to 3-lane urban facility; intersection improvements at I-5 and Franklin Boulevard</td>
<td>ODOT</td>
<td>$20,000,000</td>
<td>1.5</td>
<td>833</td>
</tr>
<tr>
<td>Franklin Blvd.</td>
<td>Jenkins Drive to Mill St.</td>
<td>Upgrade to urban facility</td>
<td>ODOT</td>
<td>$6,191,000</td>
<td>1.2</td>
<td>839</td>
</tr>
</tbody>
</table>

Project Category Subtotal

$32,692,000

Illustrative Roadway Projects

$335,992,000
Capital Investment Actions: Transit Projects

The following project categories are included in the Capital Investment Action Transit Projects list:

1. **Buses and Bus Maintenance** - These projects include new buses for expansion of service, replacement buses, expansion of bus maintenance facilities, and bus components such as radios, automated passenger counters, and fareboxes.

2. **Bus Rapid Transit** - These projects include the planning, engineering, and construction of the Bus Rapid Transit (BRT) corridors.

3. **Stops and Stations** - These projects include transit stations, Park-and-Ride lots, bus shelters, and other passenger boarding improvements.

The Capital Investment Action Transit Projects are integrated with the Planning and Program Actions for transit that implement the proposed BRT system. See page 69 for a description of the Bus Rapid Transit Implementation Process.
RTP Table 2a-Financially Constrained Capital Investment Actions: Transit Projects

<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic Limits</th>
<th>Description</th>
<th>Primary Jurisdiction</th>
<th>Estimated Cost</th>
<th>RTP #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Category: Buses and Bus Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus Purchases</td>
<td></td>
<td>New & replacement buses</td>
<td>Lane Transit District</td>
<td>$90,000,000</td>
<td>1110</td>
</tr>
<tr>
<td>Project Category Subtotal</td>
<td></td>
<td></td>
<td></td>
<td>$90,000,000</td>
<td></td>
</tr>
<tr>
<td>Project Category: Bus Rapid Transit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRT BusPlus</td>
<td>corridors totaling 30 miles</td>
<td>Express bus progressive corridor enhancement</td>
<td>Lane Transit District</td>
<td>$60,000,000</td>
<td>1117</td>
</tr>
<tr>
<td>Bus Rapid Transit (EmX)</td>
<td>corridors totaling 30 miles</td>
<td>Express bus corridor</td>
<td>Lane Transit District</td>
<td>$240,000,000</td>
<td>1115</td>
</tr>
<tr>
<td>Project Category Subtotal</td>
<td></td>
<td></td>
<td></td>
<td>$300,000,000</td>
<td></td>
</tr>
<tr>
<td>Project Category: General Stops and Stations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Park and Ride Lots</td>
<td>Various</td>
<td>Park and ride lots along major corridors</td>
<td>Lane Transit District</td>
<td>$15,000,000</td>
<td>1105</td>
</tr>
<tr>
<td>Passenger Boarding Improvements</td>
<td>Various</td>
<td>Pads, benches, and shelters</td>
<td>Lane Transit District</td>
<td>$5,000,000</td>
<td>1130</td>
</tr>
<tr>
<td>Project Category Subtotal</td>
<td></td>
<td></td>
<td></td>
<td>$20,000,000</td>
<td></td>
</tr>
<tr>
<td>Project Category: Nodal Development Transit System Investment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stations</td>
<td>4 at various locations</td>
<td>Transfer station</td>
<td>Lane Transit District</td>
<td>$6,000,000</td>
<td>1300</td>
</tr>
<tr>
<td>Project Category Subtotal</td>
<td></td>
<td></td>
<td></td>
<td>$6,000,000</td>
<td></td>
</tr>
<tr>
<td>Financially Constrained Transit Projects</td>
<td></td>
<td></td>
<td></td>
<td>$416,000,000</td>
<td></td>
</tr>
</tbody>
</table>
RTP Table 2b-Illustrative

Capital Investment Actions: Transit Projects

<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic Limits</th>
<th>Primary Jurisdiction</th>
<th>Estimated Cost</th>
<th>RTP #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus Rapid Transit (EmX)</td>
<td>Gateway-Beltline Hwy-W. 11th-30th-I-5-Springfield Station</td>
<td>Lane Transit District</td>
<td>$160,000,000</td>
<td>1116</td>
</tr>
<tr>
<td>Bus Rapid Transit (EmX)</td>
<td>Bob Straub Parkway</td>
<td>Lane Transit District</td>
<td>$24,000,000</td>
<td>904</td>
</tr>
</tbody>
</table>

Project Category Subtotal

$184,000,000

Illustrative Transit Projects

$184,000,000
Capital Investment Actions: Bicycle Projects

The Capital Investment Action Bicycle Project Lists are organized by project status – Programmed, Unprogrammed, or Future. The following project categories are included in the lists:

1. **Multi-Use Paths Without Road Project** – These projects will be constructed independent of a Roadway Project.

2. **Multi-Use Paths With Road Project** – These projects are new off-road facilities designated for non-motorized, bicycle, and pedestrian use only. The project number provided refers to the associated Roadway Project.

3. **On-Street Lanes or Routes With Road Project** – These bicycle projects will be constructed in conjunction with a Roadway Project. The project number provided refers to the associated Roadway Project.

4. **On-Street Lanes or Routes Without Road Project** – These projects consist of adding a striped bike lane to the roadway or adding Bicycle Route signs along the designated corridor. Projects in this category will be constructed independent of a Roadway Project.

For many bicycle projects, a $0 shows in the Estimated Cost field. These bicycle projects may require no capital expenditure because they can be implemented with operating funds or they are planned for construction as part of a roadway project. Thus, the cost estimates are included as part of the roadway project cost estimate.
RTP Table 3a-Financially Constrained
Capital Investment Actions: Bicycle Projects

<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic Limits</th>
<th>Description</th>
<th>Primary Jurisdiction</th>
<th>Estimated Cost</th>
<th>Length</th>
<th>RTP #</th>
</tr>
</thead>
<tbody>
<tr>
<td>5th Avenue Garfield Street to Chambers Street</td>
<td>Route, Multi-Use Path</td>
<td>Eugene</td>
<td>$189,000</td>
<td>0.21</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>South Bank Path Auzen Connector to Rail underpass</td>
<td>Multi-Use Path</td>
<td>Eugene</td>
<td>$5,770,000</td>
<td>0.51</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>Westmoreland Park Paths Fillmore Street to Taylor Street</td>
<td>Multi-Use Path</td>
<td>Eugene</td>
<td>$295,000</td>
<td>0.41</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>Spring Boulevard (B) 29th Avenue to 30th Avenue</td>
<td>Multi-Use Path</td>
<td>Eugene</td>
<td>$850,000</td>
<td>0.22</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>Fern Ridge Path - Commerce Street Connector Fern Ridge Path to Commerce Street</td>
<td>Multi-Use Path and Bridges</td>
<td>Eugene</td>
<td>$1,200,000</td>
<td>0.11</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>Avalon Street (A) Candlelight Drive to Beltline Path</td>
<td>Multi-Use Path/Route</td>
<td>Eugene</td>
<td>$700,000</td>
<td>0.36</td>
<td>403</td>
<td></td>
</tr>
<tr>
<td>West Bank Path Formac to approx. 1000ft north of Owosso Bridge</td>
<td>Construct new concrete multi-use path for Riverbank trail system</td>
<td>Eugene</td>
<td>$1,950,000</td>
<td>0.59</td>
<td>556</td>
<td></td>
</tr>
<tr>
<td>Q Street Channel Centennial Loop to Garden Way Path</td>
<td>Multi-Use Path</td>
<td>Eugene</td>
<td>$1,118,000</td>
<td>1.42</td>
<td>682</td>
<td></td>
</tr>
<tr>
<td>Valley River Connector (B) Valley River Way to North Bank Trail</td>
<td>Multi-Use Path</td>
<td>Eugene</td>
<td>$167,000</td>
<td>0.12</td>
<td>692</td>
<td></td>
</tr>
<tr>
<td>Jessen Path Green Hill Road to Beltline Road</td>
<td>Multi Use Path</td>
<td>Eugene</td>
<td>$3,400,000</td>
<td>1.81</td>
<td>463</td>
<td></td>
</tr>
<tr>
<td>North Bank Path Rehabilitation and Lighting Project Peter DeFazio Bridge to Leisure Lane</td>
<td>Multiuse path</td>
<td>Eugene</td>
<td>$1,340,686</td>
<td>0.66</td>
<td>601</td>
<td></td>
</tr>
<tr>
<td>Fern Ridge Path Rehabilitation and Lighting Project Arthur Street to Chambers Street</td>
<td>Multiuse path</td>
<td>Eugene</td>
<td>$843,703</td>
<td>0.27</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Geographic Limits</td>
<td>Description</td>
<td>Primary Jurisdiction</td>
<td>Estimated Cost</td>
<td>Length</td>
<td>RTP #</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--</td>
<td>----------------------</td>
<td>----------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Beltline Path</td>
<td>Roosevelt Boulevard to W. 11th Avenue</td>
<td>Multi-Use Path</td>
<td>ODOT</td>
<td>$2,500,000</td>
<td>1.13</td>
<td>411</td>
</tr>
<tr>
<td>MLK Parkway/Peace-Health Path multi-use path</td>
<td>Riverbend Drive to Deadmond Ferry Rd.</td>
<td>Construct new multi-use path</td>
<td>Springfield</td>
<td>$105,000</td>
<td>0.55</td>
<td>736</td>
</tr>
<tr>
<td>McKenzie River Path</td>
<td>42nd Street to 52nd Street</td>
<td>Multi-Use Path and Striped Lane</td>
<td>Springfield</td>
<td>$3,796,000</td>
<td>1.55</td>
<td>753</td>
</tr>
<tr>
<td>Peace-Health Master Plan multi-use path</td>
<td>Riverbend Loop Road to Baldyview/Deadmond Ferry intersection</td>
<td>Construct new multi-use path</td>
<td>Springfield</td>
<td>$117,000</td>
<td>0.66</td>
<td>755</td>
</tr>
<tr>
<td>Booth Kelly Road</td>
<td>28th Street to Weyerhauser Truck Road</td>
<td>Multi-Use Path</td>
<td>Springfield</td>
<td>$355,000</td>
<td>2.14</td>
<td>921</td>
</tr>
<tr>
<td>Glenwood Riverfront Path (A)</td>
<td>I-5 to Springfield Bridges</td>
<td>Multi-Use Path</td>
<td>Springfield, Willamalane</td>
<td>$3,102,000</td>
<td>1.22</td>
<td>851</td>
</tr>
<tr>
<td>Thurston Hills Ridgeline Trail</td>
<td>Potato Hill Loop to 79th</td>
<td>Multi-Use Path</td>
<td>Willamalane</td>
<td>$1,310,000</td>
<td>1.12</td>
<td>794</td>
</tr>
<tr>
<td>Moe Mountain Path</td>
<td>V Street to Marcola Rd</td>
<td>Multi-Use Path</td>
<td>Willamalane</td>
<td>$667,000</td>
<td>0.57</td>
<td>797</td>
</tr>
<tr>
<td>EWEB Path Extension West</td>
<td>East of Pioneer Parkway to Laura St</td>
<td>Multi-Use path</td>
<td>Willamalane</td>
<td>$800,000</td>
<td>0.15</td>
<td>863</td>
</tr>
<tr>
<td>Middle Fork Willamette River Loop Path</td>
<td>South 2nd Street to Clearwater Park; Phase 1 - MF Will. R., Dorris Ranch to Clearwater Park; Phase 2 - Clearwater Park to S.32nd St; Phase 3 - S. 32nd St to S. 28th St; Phase 4 - 28th St. to S. 2nd St.</td>
<td>Multi-Use Path</td>
<td>Willamalane, Springfield</td>
<td>$6,000,000</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>By Gully Extension</td>
<td>Mill Street to 8th Street</td>
<td>Multi-Use Path</td>
<td>Willamalane, Springfield</td>
<td>$128,700</td>
<td>0.11</td>
<td>812</td>
</tr>
<tr>
<td>Name</td>
<td>Geographic Limits</td>
<td>Description</td>
<td>Primary Jurisdiction</td>
<td>Estimated Cost</td>
<td>Length</td>
<td>RTP #</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------------------------------</td>
<td>--------------------------------</td>
<td>----------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Springfield - Mt. Pisgah Connector</td>
<td>Jasper Road to Buford Park Road</td>
<td>Route, Multi-Use Path, Bridge</td>
<td>Willamalane, Springfield</td>
<td>$ 4,423,000</td>
<td>2.78</td>
<td>960</td>
</tr>
</tbody>
</table>

Project Category Subtotal $ 41,127,089
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic Limits</th>
<th>Description</th>
<th>Primary Jurisdiction</th>
<th>Estimated Cost</th>
<th>Length</th>
<th>RTP #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob Straub Parkway</td>
<td>57th Street to Jasper Road@ Brand S Rd</td>
<td>Phase 2: Off-road multiuse path inside city limits; 8' shoulders outside</td>
<td>Lane County</td>
<td>$0</td>
<td>1.9</td>
<td>66</td>
</tr>
<tr>
<td>I-5 Path</td>
<td>Chad Drive to Harlow Road</td>
<td>Multi-Use Path (part of roadway project 606)</td>
<td>ODOT, Eugene</td>
<td>$0</td>
<td>0.89</td>
<td>668</td>
</tr>
</tbody>
</table>

Project Category Subtotal

$0
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic Limits</th>
<th>Description</th>
<th>Primary Jurisdiction</th>
<th>Estimated Cost</th>
<th>Length</th>
<th>RTP #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summit Avenue</td>
<td>Fairmount Boulevard to Floral Hill Drive</td>
<td>Route</td>
<td>Eugene</td>
<td>$</td>
<td>0.31</td>
<td>287</td>
</tr>
<tr>
<td>Dillard Road</td>
<td>E. Amazon Drive to UGB</td>
<td>Striped Lane</td>
<td>Eugene</td>
<td>$ 706,000</td>
<td>1.34</td>
<td>298</td>
</tr>
<tr>
<td>Bertelsen Road</td>
<td>18th Avenue to Bailey Hill Road</td>
<td>Striped Lane</td>
<td>Eugene</td>
<td>$</td>
<td>0.6</td>
<td>315</td>
</tr>
<tr>
<td>Bethel Drive</td>
<td>Highway 99 to Roosevelt Blvd</td>
<td>Striped Lane or Route</td>
<td>Eugene</td>
<td>$</td>
<td>1.69</td>
<td>414</td>
</tr>
<tr>
<td>Legacy Extension (Future Collector H)</td>
<td>Avalon Street to Royal Avenue</td>
<td>Striped Lane or Route</td>
<td>Eugene</td>
<td>$</td>
<td>0.47</td>
<td>435</td>
</tr>
<tr>
<td>Haviture Way/ Heath Dr (Future Collector O)</td>
<td>Barger Drive to Excalibur Lane</td>
<td>Striped Lane or Route</td>
<td>Eugene</td>
<td>$</td>
<td>0.13</td>
<td>447</td>
</tr>
<tr>
<td>Royal Avenue</td>
<td>Green Hill Road to Terry Street</td>
<td>Striped Lane</td>
<td>Eugene</td>
<td>$</td>
<td>1.01</td>
<td>481</td>
</tr>
<tr>
<td>Goodpasture Island Road</td>
<td>Delta Highway to Happy Lane</td>
<td>Striped Lane</td>
<td>Eugene</td>
<td>$</td>
<td>0.19</td>
<td>664</td>
</tr>
<tr>
<td>Van Duyn Road</td>
<td>Western Drive to Harlow Road</td>
<td>Route</td>
<td>Eugene</td>
<td>$</td>
<td>0.25</td>
<td>696</td>
</tr>
<tr>
<td>Fox Hollow Road</td>
<td>Donald Street to Cline Road</td>
<td>Striped Lane, shoulders</td>
<td>Eugene, Lane County</td>
<td>$</td>
<td>0.5</td>
<td>245</td>
</tr>
<tr>
<td>Green Hill Road</td>
<td>Airport Road to Barger Drive</td>
<td>Shoulder</td>
<td>Lane County</td>
<td>$</td>
<td>1.98</td>
<td>485</td>
</tr>
<tr>
<td>Hunsaker Lane / Beaver Street</td>
<td>River Road to Division Avenue</td>
<td>Striped Lane</td>
<td>Lane County</td>
<td>$</td>
<td>1.14</td>
<td>527</td>
</tr>
<tr>
<td>Wilkes Drive</td>
<td>River Road to River Loop 1</td>
<td>Striped Lane</td>
<td>Lane County</td>
<td>$</td>
<td>0.93</td>
<td>554</td>
</tr>
<tr>
<td>Game Farm Road South</td>
<td>Beltline Road to Harlow Road</td>
<td>Striped Lane</td>
<td>Lane County</td>
<td>$</td>
<td>0.93</td>
<td>737</td>
</tr>
<tr>
<td>Hayden Bridge Road / 23rd St</td>
<td>Yolanda Avenue to Marcola Road</td>
<td>Striped Lane</td>
<td>Lane County</td>
<td>$</td>
<td>1.78</td>
<td>747</td>
</tr>
<tr>
<td>31st Street</td>
<td>Hayden Bridge to U Street</td>
<td>Striped Lane</td>
<td>Lane County</td>
<td>$</td>
<td>0.58</td>
<td>765</td>
</tr>
<tr>
<td>Green Hill Road</td>
<td>Barger Drive to West 11th Avenue</td>
<td>Striped Lane</td>
<td>Lane County, Eugene</td>
<td>$</td>
<td>2.27</td>
<td>454</td>
</tr>
</tbody>
</table>

Project Category: On-Street Lanes or Routes With Road Project
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic Limits</th>
<th>Description</th>
<th>Primary Jurisdiction</th>
<th>Estimated Cost</th>
<th>Length</th>
<th>RTP #</th>
</tr>
</thead>
<tbody>
<tr>
<td>County Farm Road</td>
<td>North-to-South section</td>
<td>Striped lane</td>
<td>Lane County, Eugene</td>
<td>$</td>
<td>0.62</td>
<td>631</td>
</tr>
<tr>
<td>County Farm Road</td>
<td>West-to-East section</td>
<td>Striped Lane</td>
<td>Lane County, Eugene</td>
<td>$</td>
<td>0.53</td>
<td>632</td>
</tr>
<tr>
<td>Laura Street</td>
<td>Old Laura Street to Scotts Glen Drive</td>
<td>Striped Lane</td>
<td>Lane County, Eugene</td>
<td>$</td>
<td>0.4</td>
<td>750</td>
</tr>
<tr>
<td>Aspen Street</td>
<td>Menlo Loop to West D Street</td>
<td>Striped Lane</td>
<td>Lane County, Springfield</td>
<td>$</td>
<td>0.58</td>
<td>809</td>
</tr>
<tr>
<td>Jasper Road (B)</td>
<td>Mt. Vernon Road to UGB South</td>
<td>Striped Lane</td>
<td>Lane County</td>
<td>2.2</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>W. 11th Avenue</td>
<td>Green Hill Road to Terry Street</td>
<td>Striped Lane</td>
<td>ODOT, Eugene</td>
<td>1.06</td>
<td>333</td>
<td></td>
</tr>
<tr>
<td>51st / 52nd Street</td>
<td>High Banks Road to Main Street</td>
<td>Route, Striped Lane</td>
<td>Springfield</td>
<td>$</td>
<td>1.2</td>
<td>6</td>
</tr>
<tr>
<td>79th Street</td>
<td>Main Street to Glacier Drive</td>
<td>Striped Lane</td>
<td>Springfield</td>
<td>$</td>
<td>0.46</td>
<td>20</td>
</tr>
<tr>
<td>Glacier Drive</td>
<td>48th Street to 57th Street</td>
<td>Striped Lane</td>
<td>Springfield</td>
<td>$</td>
<td>0.91</td>
<td>57</td>
</tr>
<tr>
<td>37th Street</td>
<td>Ambleside Drive to Marcola Road</td>
<td>Striped Lane</td>
<td>Springfield</td>
<td>$</td>
<td>0.63</td>
<td>709</td>
</tr>
<tr>
<td>42nd Street</td>
<td>Marcola Road to Railroad Tracks</td>
<td>Striped Lane</td>
<td>Springfield</td>
<td>$</td>
<td>1.1</td>
<td>713</td>
</tr>
<tr>
<td>Glenwood Boulevard</td>
<td>Glenwood Drive to Judkins Road</td>
<td>Striped Lane</td>
<td>Springfield</td>
<td>$</td>
<td>0.42</td>
<td>827</td>
</tr>
<tr>
<td>19th Avenue</td>
<td>Glenwood Boulevard to Henderson Avenue</td>
<td>Striped Lane</td>
<td>Springfield</td>
<td>$</td>
<td>0.2</td>
<td>861</td>
</tr>
<tr>
<td>48th Street</td>
<td>Aster Street to Daisy Street</td>
<td>Striped Lane</td>
<td>Springfield</td>
<td>$</td>
<td>0.3</td>
<td>901</td>
</tr>
<tr>
<td>28th Street</td>
<td>Centennial Boulevard to Main Street</td>
<td>Striped Lane</td>
<td>Springfield</td>
<td>$</td>
<td>0.7</td>
<td>909</td>
</tr>
<tr>
<td>35th Street</td>
<td>Olympic Street to Commercial Avenue</td>
<td>Striped Lane</td>
<td>Springfield</td>
<td>$</td>
<td>0.57</td>
<td>918</td>
</tr>
<tr>
<td>Commercial Street</td>
<td>35th Street to 42nd Street</td>
<td>Striped Lane</td>
<td>Springfield</td>
<td>$</td>
<td>0.7</td>
<td>933</td>
</tr>
<tr>
<td>S. 28th Street</td>
<td>Main Street to Millrace</td>
<td>Striped Lane</td>
<td>Springfield</td>
<td>$</td>
<td>0.51</td>
<td>945</td>
</tr>
<tr>
<td>21st Street</td>
<td>D Street to Main Street</td>
<td>Striped Lane</td>
<td>Springfield</td>
<td>$</td>
<td>0.2</td>
<td>962</td>
</tr>
<tr>
<td>Virginia / Daisy Bicycle Boulevard</td>
<td>S. 32nd Street to Bob Straub Parkway</td>
<td>Bicycle and traffic safety improvements</td>
<td>Springfield</td>
<td>$ 1,000,000</td>
<td>2.58</td>
<td>903</td>
</tr>
<tr>
<td>Name</td>
<td>Geographic Limits</td>
<td>Description</td>
<td>Primary Jurisdiction</td>
<td>Estimated Cost</td>
<td>Length</td>
<td>RTP #</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
<td>----------------------</td>
<td>----------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>D Street / E Street Bicycle Boulevard</td>
<td>D Street River Path to 28th Street</td>
<td>Bicycle and traffic safety improvements</td>
<td>Springfield</td>
<td>$1,000,000</td>
<td>2.52</td>
<td>805</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Category Subtotal</td>
<td></td>
<td></td>
<td></td>
<td>2,706,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Geographic Limits</td>
<td>Description</td>
<td>Primary Jurisdiction</td>
<td>Estimated Cost</td>
<td>Length</td>
<td>RTP #</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>11th Avenue</td>
<td>Chambers Street to Lincoln Street</td>
<td>Striped Lane</td>
<td>Eugene</td>
<td>$</td>
<td>37,000</td>
<td>1.04</td>
</tr>
<tr>
<td>13th Avenue</td>
<td>Chambers Street to Lawrence Street</td>
<td>Striped Lane</td>
<td>Eugene</td>
<td>$</td>
<td>37,000</td>
<td>0.96</td>
</tr>
<tr>
<td>24th Avenue</td>
<td>Chambers Street to Jefferson Street</td>
<td>Striped Lane</td>
<td>Eugene</td>
<td>$</td>
<td>74,000</td>
<td>0.82</td>
</tr>
<tr>
<td>2nd Avenue</td>
<td>Polk Street to Van Buren Street</td>
<td>Route</td>
<td>Eugene</td>
<td>$</td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td>Garfield Street</td>
<td>Roosevelt Boulevard to 14th Avenue</td>
<td>Striped Lane</td>
<td>Eugene</td>
<td>$</td>
<td>163,000</td>
<td>1.29</td>
</tr>
<tr>
<td>Lincoln Street / Lawrence</td>
<td>5th Avenue to 18th Avenue</td>
<td>Route</td>
<td>Eugene</td>
<td>$</td>
<td></td>
<td>1.14</td>
</tr>
<tr>
<td>McKinley Street</td>
<td>5th Avenue to 7th Avenue</td>
<td>Route</td>
<td>Eugene</td>
<td>$</td>
<td></td>
<td>0.19</td>
</tr>
<tr>
<td>Mill Street</td>
<td>10th Avenue to 15th Avenue</td>
<td>Route</td>
<td>Eugene</td>
<td>$</td>
<td>495,000</td>
<td>0.38</td>
</tr>
<tr>
<td>Polk Street</td>
<td>6th Avenue to 24th Avenue</td>
<td>Striped Lane</td>
<td>Eugene</td>
<td>$</td>
<td>495,000</td>
<td>1.39</td>
</tr>
<tr>
<td>High Street</td>
<td>3rd Avenue to 5th Avenue</td>
<td>Striped Lane</td>
<td>Eugene</td>
<td>$</td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td>30th Avenue / Amazon</td>
<td>Agate Street to 29th Avenue</td>
<td>Striped Lane</td>
<td>Eugene</td>
<td>$</td>
<td>654,000</td>
<td>0.91</td>
</tr>
<tr>
<td>Parkway</td>
<td>I-5 Ramp to Floral Hill Drive</td>
<td>Striped Lane</td>
<td>Eugene</td>
<td>$</td>
<td></td>
<td>0.98</td>
</tr>
<tr>
<td>Augusta Street</td>
<td>39th Avenue to Fox Hollow Road</td>
<td>Route</td>
<td>Eugene</td>
<td>$</td>
<td></td>
<td>0.62</td>
</tr>
<tr>
<td>Donald Street</td>
<td>24th Avenue to Laurelwood Golf</td>
<td>Route</td>
<td>Eugene</td>
<td>$</td>
<td></td>
<td>0.82</td>
</tr>
<tr>
<td>Street / 29th Avenue</td>
<td>Course and University Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring Boulevard (A)</td>
<td>Fairmount Boulevard to 29th Avenue</td>
<td>Route</td>
<td>Eugene</td>
<td>$</td>
<td></td>
<td>1.07</td>
</tr>
<tr>
<td>Tyler Street</td>
<td>24th Avenue to 28th Avenue</td>
<td>Route</td>
<td>Eugene</td>
<td>$</td>
<td></td>
<td>0.37</td>
</tr>
<tr>
<td>Walnut Street</td>
<td>15th Avenue to Fairmount Boulevard</td>
<td>Route</td>
<td>Eugene</td>
<td>$</td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td>Willamette Street</td>
<td>18th Avenue to 32nd Avenue</td>
<td>Striped Lane</td>
<td>Eugene</td>
<td>$</td>
<td>490,000</td>
<td>1.3</td>
</tr>
<tr>
<td>Name</td>
<td>Geographic Limits</td>
<td>Description</td>
<td>Primary Jurisdiction</td>
<td>Estimated Cost</td>
<td>Length</td>
<td>RTP #</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>7th Avenue</td>
<td>Bailey Hill Road to McKinley Street</td>
<td>Striped Lane or Route</td>
<td>Eugene</td>
<td>$</td>
<td>-</td>
<td>0.9</td>
</tr>
<tr>
<td>Bailey Hill Road</td>
<td>5th Avenue to W. 7th Avenue</td>
<td>Striped Lane</td>
<td>Eugene</td>
<td>$</td>
<td>-</td>
<td>0.09</td>
</tr>
<tr>
<td>Seneca Road</td>
<td>7th Place to W. 11th Avenue</td>
<td>Striped Lane</td>
<td>Eugene</td>
<td>$</td>
<td>-</td>
<td>0.27</td>
</tr>
<tr>
<td>Candlelight Drive / Danebo Avenue</td>
<td>Barger Avenue to Royal Avenue</td>
<td>Route</td>
<td>Eugene</td>
<td>$</td>
<td>-</td>
<td>1.01</td>
</tr>
<tr>
<td>Golden Gardens</td>
<td>Jessen Drive to Barger Drive</td>
<td>Route</td>
<td>Eugene</td>
<td>$</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>Prairie Road</td>
<td>Maxwell Road to Highway 99</td>
<td>Striped Lane</td>
<td>Eugene</td>
<td>$</td>
<td>72,000</td>
<td>0.15</td>
</tr>
<tr>
<td>Silver Lane</td>
<td>Grove Street to River Road</td>
<td>Striped Lane</td>
<td>Eugene</td>
<td>$</td>
<td>-</td>
<td>0.89</td>
</tr>
<tr>
<td>Clinton Drive / Debrick Road</td>
<td>Cal Young Road to Willagillespie Road</td>
<td>Route</td>
<td>Eugene</td>
<td>$</td>
<td>-</td>
<td>0.51</td>
</tr>
<tr>
<td>Lakeview/ Parkview</td>
<td>Gilham Road to County Farm Road</td>
<td>Striped Lane or Route</td>
<td>Eugene</td>
<td>$</td>
<td>-</td>
<td>0.79</td>
</tr>
<tr>
<td>Gilham Road</td>
<td>Torr Avenue to Ayers Road</td>
<td>Striped Lane or Route</td>
<td>Eugene</td>
<td>$</td>
<td>-</td>
<td>0.25</td>
</tr>
<tr>
<td>Kinsrow Avenue</td>
<td>Martin Luther King Jr. Boulevard to Commons Drive</td>
<td>Route</td>
<td>Eugene</td>
<td>$</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>Minda Drive / Sally Way</td>
<td>Norkenzie Road to Norwood Street</td>
<td>Route</td>
<td>Eugene</td>
<td>$</td>
<td>-</td>
<td>0.51</td>
</tr>
<tr>
<td>Tandy Turn / Lariat Meadows</td>
<td>Oakway Road to Coburg Road</td>
<td>Route</td>
<td>Eugene</td>
<td>$</td>
<td>-</td>
<td>0.48</td>
</tr>
<tr>
<td>Torr Avenue</td>
<td>Gilham Road to Wildish Lane</td>
<td>Striped Lane or Route</td>
<td>Eugene</td>
<td>$</td>
<td>-</td>
<td>0.66</td>
</tr>
<tr>
<td>Valley River Way (A)</td>
<td>Valley River Drive to Valley River Connector</td>
<td>Striped Lane</td>
<td>Eugene</td>
<td>$</td>
<td>248,000</td>
<td>0.23</td>
</tr>
<tr>
<td>Van Duyn Road / Bogart Road</td>
<td>Willakenzie Road to Western Drive</td>
<td>Route</td>
<td>Eugene</td>
<td>$</td>
<td>-</td>
<td>0.61</td>
</tr>
<tr>
<td>Name</td>
<td>Geographic Limits</td>
<td>Description</td>
<td>Primary Jurisdiction</td>
<td>Estimated Cost</td>
<td>Length</td>
<td>RTP #</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>----------------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Blair-Van Buren Streetscape and Active Transportation Corridor</td>
<td></td>
<td>On-street route and streetscape</td>
<td>Eugene</td>
<td>$1,011,786</td>
<td>1</td>
<td>101</td>
</tr>
<tr>
<td>W. 11th Avenue</td>
<td>Danebo Avenue to Chambers Street</td>
<td>Striped Lane</td>
<td>Eugene, ODOT</td>
<td>$</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Thurston Road</td>
<td>Billings Road to Highway 126</td>
<td>Route or Shoulder</td>
<td>Lane County</td>
<td>$150,000</td>
<td>1.61</td>
<td>97</td>
</tr>
<tr>
<td>Green Hill Road</td>
<td>W. 11th Avenue to Crow Road</td>
<td>Striped Lane/Shoulder</td>
<td>Lane County</td>
<td>$250,000</td>
<td>0.26</td>
<td>453</td>
</tr>
<tr>
<td>Grove Street</td>
<td>Silver Lane to Howard Avenue</td>
<td>Striped Lane or Route</td>
<td>Lane County</td>
<td>$150,000</td>
<td>0.16</td>
<td>515</td>
</tr>
<tr>
<td>Hilliard Lane</td>
<td>N. Park Avenue to W. Bank Trail</td>
<td>Route</td>
<td>Lane County</td>
<td>$1,000,000</td>
<td>1.09</td>
<td>518</td>
</tr>
<tr>
<td>Horn Lane</td>
<td>Lake Drive to River Road</td>
<td>Striped Lane or Route</td>
<td>Lane County</td>
<td>$700,000</td>
<td>0.75</td>
<td>521</td>
</tr>
<tr>
<td>Howard Avenue</td>
<td>River Road to N. Park Avenue</td>
<td>Striped Lane or Route</td>
<td>Lane County</td>
<td>$900,000</td>
<td>0.96</td>
<td>524</td>
</tr>
<tr>
<td>Lake Drive / Horn Ln/ N. Park Avenue</td>
<td>Howard Road to Northwest Expressway</td>
<td>Striped Lane or Route</td>
<td>Lane County</td>
<td>$850,000</td>
<td>0.91</td>
<td>536</td>
</tr>
<tr>
<td>N. Park Avenue</td>
<td>Maxwell Road to Horn Lane</td>
<td>Striped Lane or Route</td>
<td>Lane County</td>
<td>$950,000</td>
<td>1.02</td>
<td>539</td>
</tr>
<tr>
<td>Seavey Loop Road / Franklin Boulevard</td>
<td>Coast Fork of Willamette River to I-5</td>
<td>Route or Shoulder</td>
<td>Lane County</td>
<td>$250,000</td>
<td>2.44</td>
<td>957</td>
</tr>
<tr>
<td>Franklin Blvd.</td>
<td>Brooklyn to Willamette River</td>
<td>Striped Lane or Multi-use Path</td>
<td>ODOT</td>
<td>0.25</td>
<td></td>
<td>807</td>
</tr>
<tr>
<td>McVay Highway</td>
<td>I-5 to 30th Avenue</td>
<td>Striped Lane</td>
<td>ODOT</td>
<td>0.71</td>
<td></td>
<td>834</td>
</tr>
<tr>
<td>66th Street</td>
<td>Thurston Road to Main Street</td>
<td>Striped Lane</td>
<td>Springfield</td>
<td>$</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>S. 67th Street</td>
<td>Ivy Street to Main Street</td>
<td>Striped Lane or Route</td>
<td>Springfield</td>
<td>$61,000</td>
<td>0.3</td>
<td>92</td>
</tr>
<tr>
<td>S. 70th Street</td>
<td>Main Street to Ivy Street</td>
<td>Striped Lane</td>
<td>Springfield</td>
<td>$166,000</td>
<td>0.6</td>
<td>94</td>
</tr>
<tr>
<td>Ivy Street</td>
<td>67th Street to 70th Street</td>
<td>Route</td>
<td>Springfield</td>
<td>$</td>
<td>-</td>
<td>99</td>
</tr>
<tr>
<td>Name</td>
<td>Geographic Limits</td>
<td>Description</td>
<td>Primary Jurisdiction</td>
<td>Estimated Cost</td>
<td>Length</td>
<td>RTP #</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>EWEB Path Extension / 35th-37th Street</td>
<td>Bike Path to Ambleside</td>
<td>Striped Lane</td>
<td>Springfield</td>
<td>$</td>
<td>-</td>
<td>0.23</td>
</tr>
<tr>
<td>Yolanda Avenue</td>
<td>23rd Street to 31st Street</td>
<td>Striped Lane</td>
<td>Springfield</td>
<td>$</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>5th Street</td>
<td>Centennial Boulevard to G Street</td>
<td>Striped Lane</td>
<td>Springfield</td>
<td>$</td>
<td>-</td>
<td>0.35</td>
</tr>
<tr>
<td>Mill Street</td>
<td>Fairview Drive to S. A Street</td>
<td>Striped Lane</td>
<td>Springfield</td>
<td>$</td>
<td>-</td>
<td>0.99</td>
</tr>
<tr>
<td>Nugget, 15th, 17th, 19th in Glenwood</td>
<td>Commercial Street to Main Street</td>
<td>Route</td>
<td>Springfield</td>
<td>$</td>
<td>-</td>
<td>1.58</td>
</tr>
<tr>
<td>Rainbow Drive</td>
<td>Centennial Boulevard to West D Street</td>
<td>Striped Lane</td>
<td>Springfield</td>
<td>$</td>
<td>-</td>
<td>0.55</td>
</tr>
<tr>
<td>G Street</td>
<td>5th Street to 28th Street</td>
<td>Striped Lane or Route</td>
<td>Springfield</td>
<td>$</td>
<td>14,000</td>
<td>1.6</td>
</tr>
<tr>
<td>28th Street</td>
<td>Centennial Boulevard to Olympic Street</td>
<td>Striped Lane</td>
<td>Springfield</td>
<td>$</td>
<td>-</td>
<td>0.26</td>
</tr>
<tr>
<td>N. 36th Street</td>
<td>Commercial Street to Main Street</td>
<td>Striped Lane or Route</td>
<td>Springfield</td>
<td>$</td>
<td>145,000</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Project Category Subtotal
$9,362,786

Financially Constrained Bicycle Projects
$53,195,875
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic Limits</th>
<th>Description</th>
<th>Primary Jurisdiction</th>
<th>Estimated Cost</th>
<th>Length</th>
<th>RTP #</th>
</tr>
</thead>
<tbody>
<tr>
<td>16th Avenue Connector</td>
<td>Fern Ridge Path to Jefferson Street</td>
<td>Multi-Use Path</td>
<td>Eugene</td>
<td>$170,000</td>
<td>0.09</td>
<td>112</td>
</tr>
<tr>
<td>Augusta Street Path</td>
<td>Laurel Hill Park to 30th Avenue</td>
<td>Multi-Use Path</td>
<td>Eugene</td>
<td>$1,500,000</td>
<td>0.79</td>
<td>221</td>
</tr>
<tr>
<td>Deertrail Path</td>
<td>29th Avenue to Sundance Street</td>
<td>Multi-Use Path, Route</td>
<td>Eugene</td>
<td>$3,500,000</td>
<td>1.85</td>
<td>230</td>
</tr>
<tr>
<td>Upper Amazon Path</td>
<td>Hilyard Street to Canyon Drive</td>
<td>Multi-Use Path</td>
<td>Eugene</td>
<td>$3,700,000</td>
<td>1.95</td>
<td>293</td>
</tr>
<tr>
<td>South Hills Trail</td>
<td>Bailey Hill Road to Willamette Street</td>
<td>Multi-Use Path</td>
<td>Eugene</td>
<td>$10,200,000</td>
<td>5.47</td>
<td>327</td>
</tr>
<tr>
<td>Meadowview Bike Path</td>
<td>Meadowview School to Fern Ridge Path</td>
<td>Multi-Use Path</td>
<td>Eugene</td>
<td>$1,400,000</td>
<td>0.75</td>
<td>496</td>
</tr>
<tr>
<td>West Bank Path (B)</td>
<td>Hileman Co. Park to Beltline Highway</td>
<td>Multi-Use Path</td>
<td>Eugene</td>
<td>$7,000,000</td>
<td>3.75</td>
<td>551</td>
</tr>
<tr>
<td>Delta Highway Path</td>
<td>Delta Ponds to Willagillespie School</td>
<td>Multi-Use Path</td>
<td>Eugene</td>
<td>$2,129,000</td>
<td>0.47</td>
<td>636</td>
</tr>
<tr>
<td>Fern Ridge Path #3</td>
<td>Royal Avenue to Fern Ridge Reservoir</td>
<td>Multi-Use Path</td>
<td>Eugene, Lane County</td>
<td>$6,891,000</td>
<td>0.91</td>
<td>426</td>
</tr>
<tr>
<td>Willamette McKenzie Path</td>
<td>Beltline Road to Armitage Park</td>
<td>Multi-Use Path</td>
<td>Eugene, Lane County</td>
<td>$9,300,000</td>
<td>4.99</td>
<td>699</td>
</tr>
<tr>
<td>McKenzie-Gateway Path</td>
<td>Game Farm Road S. to Deadmond Ferry Road</td>
<td>Multi-Use Path</td>
<td>Springfield</td>
<td>$1,309,000</td>
<td>-</td>
<td>759</td>
</tr>
<tr>
<td>Glenwood River Front Path (B)</td>
<td>Springfield Bridges to Seavey Loop Road</td>
<td>Multi-Use Path</td>
<td>Springfield</td>
<td>$3,593,000</td>
<td>1.59</td>
<td>854</td>
</tr>
<tr>
<td>Glenwood Bicycle / Pedestrian Bridge</td>
<td>Island Park to Southwest bank of Willamette River</td>
<td>Newly constructed multiuse path bridge</td>
<td>Springfield, Willamalane</td>
<td>$4,000,000</td>
<td>0.21</td>
<td>804</td>
</tr>
<tr>
<td>Name</td>
<td>Geographic Limits</td>
<td>Description</td>
<td>Primary Jurisdiction</td>
<td>Estimated Cost</td>
<td>Length</td>
<td>RTP #</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>--</td>
<td>----------------------</td>
<td>----------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Game Bird Park Path</td>
<td>Flamingo Avenue to N. Cloverleaf Loop</td>
<td>Multi-Use Path</td>
<td>Willamalane</td>
<td>$</td>
<td>724,000</td>
<td>0.1</td>
</tr>
<tr>
<td>SCS Channel Path</td>
<td>Guy Lee Park</td>
<td>Multi-Use Path</td>
<td>Willamalane</td>
<td>$</td>
<td>316,000</td>
<td>0.27</td>
</tr>
<tr>
<td>Coburg Loop Path: Armitage Park Connector</td>
<td>McKenzie View Rd. Intersection at Coburg Rd. north (most likely) along former rail grade connecting adjacent to Roberts Rd. to Assessors Map 16-03-33-40, Tax Lot 00700</td>
<td>A 10’ wide hardsurface, multiuse path extending approximately one mile between Southern end of Roberts Rd., Coburg and Armitage County Park, Eugene on the McKenzie River</td>
<td>Coburg</td>
<td>$865,000</td>
<td>1.3</td>
<td>1001</td>
</tr>
</tbody>
</table>

Project Category Subtotal
$ 55,288,000
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic Limits</th>
<th>Description</th>
<th>Primary Jurisdiction</th>
<th>Estimated Cost</th>
<th>Length</th>
<th>RTP #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob Straub Parkway Multiuse Path</td>
<td>Mt Vernon Road to the City Limits</td>
<td>Extend the existing multiuse path to city limits</td>
<td>Lane County</td>
<td>$268,000</td>
<td>0.5</td>
<td>902</td>
</tr>
</tbody>
</table>

Project Category Subtotal
$268,000
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic Limits</th>
<th>Description</th>
<th>Primary Jurisdiction</th>
<th>Estimated Cost</th>
<th>Length</th>
<th>RTP #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beaver Street Arterial</td>
<td>Hunsaker Lane to Wilkes Drive</td>
<td>Striped Lane</td>
<td>Lane County</td>
<td>$</td>
<td>0.84</td>
<td>503</td>
</tr>
<tr>
<td>Division Avenue</td>
<td>Beaver Street to Delta Highway</td>
<td>Striped Lane</td>
<td>Lane County</td>
<td>$</td>
<td>0.89</td>
<td>512</td>
</tr>
<tr>
<td>McVay Highway</td>
<td>I-5 to Franklin Boulevard</td>
<td>Striped Lane</td>
<td>ODOT</td>
<td>$</td>
<td>1.5</td>
<td>833</td>
</tr>
<tr>
<td>Franklin Blvd.</td>
<td>Jenkins Drive to Mill St.</td>
<td>Striped Lane</td>
<td>ODOT</td>
<td>$</td>
<td>1.2</td>
<td>839</td>
</tr>
</tbody>
</table>

Project Category Subtotal $ -
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic Limits</th>
<th>Description</th>
<th>Primary Jurisdiction</th>
<th>Estimated Cost</th>
<th>Length</th>
<th>RTP #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jefferson Street</td>
<td>18th Avenue to 28th Avenue</td>
<td>Striped Lane</td>
<td>Eugene</td>
<td>$295,000</td>
<td>0.89</td>
<td>157</td>
</tr>
<tr>
<td>Broadway / Franklin Boulevard</td>
<td>Mill Street to East of I-5</td>
<td>Striped Lane</td>
<td>Eugene</td>
<td>$</td>
<td>-</td>
<td>1.91</td>
</tr>
<tr>
<td>Jefferson Street</td>
<td>13th Avenue to 18th Avenue</td>
<td>Striped Lane</td>
<td>Eugene</td>
<td>$115,000</td>
<td>0.35</td>
<td>263</td>
</tr>
<tr>
<td>Jefferson / Washington</td>
<td>5th Avenue to 13th Avenue</td>
<td>Striped Lane</td>
<td>Eugene</td>
<td>$124,000</td>
<td>0.53</td>
<td>266</td>
</tr>
<tr>
<td>Portland Street / 27th Avenue</td>
<td>Willamette Street to 29th Avenue</td>
<td>Route</td>
<td>Eugene</td>
<td>$110,000</td>
<td>0.89</td>
<td>275</td>
</tr>
<tr>
<td>Bethel Connector</td>
<td>Rikhoff to Park Avenue</td>
<td>Multi-Use Path</td>
<td>Eugene</td>
<td>$</td>
<td>-</td>
<td>0.15</td>
</tr>
<tr>
<td>Spyglass Drive</td>
<td>Cal Young Road to Oakway Road</td>
<td>Route, Accessway</td>
<td>Eugene</td>
<td>$192,000</td>
<td>1</td>
<td>684</td>
</tr>
</tbody>
</table>

Project Category Subtotal $836,000

Illustrative Bicycle Projects $56,392,000
Part Two: Financial Plan
This section provides the Financial Plan for the RTP. It presents:

- A summary of the federal regulations for financial constraint,
- A summary of future cost and revenue estimate methodologies,
- Forecasts of revenue from existing sources,
- An assessment of the revenue shortfall,
- A list of strategies to address the shortfall, and
- Development of the Constrained Plan.

Much of the financial plan analysis presented here was conducted for the major update of the RTP completed in 2002. The following sections describe both this prior work as well as the updates to the financial plan analysis implemented for the 2004, 2007, and 2011 RTP updates.

Forecasts of state and federal modernization revenue sources are developed cooperatively by a statewide working group consisting of ODOT staff and representatives from all Oregon MPOs. These forecasts have most recently been updated in 2010-2011 to reflect SAFETEA-LU and are the basis of the financial forecasts used in the 2011 update of the RTP.

Forecasts of local modernization (or “systems improvements”) and all operations, maintenance and preservation (OM&P) revenues for the 2011 RTP update are based on an extension of the financial model used for the 2002 RTP, adjusted for the new time frame and for inflation.

Federal Regulations for Financial Constraint

Federal legislation sets forth guidelines that seek to ensure that the needs identified in the RTP are balanced with resources expected to be available over the planning period. Guidelines in the federal Safe Accountable Flexible Efficient Transportation Equity Act - A Legacy for Users (SAFE-TEA-LU) state that the RTP must include:

A financial plan that demonstrates how the adopted long-range transportation plan can be implemented, indicates resources from public and private sources that are reasonably expected to be made available to carry out the plan, and recommends any additional financing strategies for needed projects and programs.

Furthermore:

The financial plan may include, for illustrative purposes, additional projects that would be included in the adopted long-range transportation plan if reasonable additional resources beyond those identified in the financial plan were available. For the purpose of developing the long-range transportation plan, the metropolitan planning organization and State shall cooperatively develop estimates of funds that will be available to support plan implementation.
Transportation costs can be viewed in many different ways, by jurisdiction, by mode, and by expenditure. Table 4 summarizes costs and revenues by transportation system (roadway, transit, and bicycle and pedestrian), by expenditure (OM&P and capital improvements), and by jurisdiction.

Future Cost and Revenue Estimate Methodologies

The estimation of future costs and revenues was guided by several sources. The Oregon Roads Finance Study (ORFS) estimated transportation system needs at the state level in 1993, and provided unit costs for the estimation of O&M, preservation, and capital needs for this region. ODOT developed *Financial Assumptions for the Development of Metropolitan Transportation Plans* in 1995 (updated in 2000, 2006, and 2011), providing estimates of future federal and state revenues. ODOT is continuously working with a statewide task force of MPO representatives to develop updated revenue forecasts.

Roadway System Costs

Roadway costs were divided into three categories:

1. Operations and Maintenance,
2. Preservation, and
3. Modernization.

O&M generally includes activities necessary to keep the transportation system safe and in repair. Preservation activities generally extend the useful life of a facility, and are larger in cost and scope than O&M. Modernization consists of major capital improvements that bring facilities to urban standards, or add capacity.

For the purpose of estimating operations and maintenance costs, the roadway system inventories were summarized in lane miles by functional class and pavement type. O&M unit costs from the ORFS were applied to these inventories. The unit costs were adjusted for inflation to reflect 2011 unit costs, and increased by 9 percent to account for administration costs.

With respect to preservation costs, jurisdictions coordinated condition-rating criteria so the categories were similar throughout the area. The percentages of the system in need of resurfacing or reconstruction were applied to system totals by functional class in centerline miles. This yielded an estimate of current preservation need for the 2002 TransPlan. For the 2004, 2007, and 2011 RTP updates, the preservation estimate has been updated, adjusting for inflation and extending the planning horizon.

To estimate modernization costs, data from Eugene, Springfield, and Lane County public works departments and the ORFS were used as the bases for developing unit cost assumptions for roadway improvement projects. Specific project scope cost estimates were also developed for many individual projects – all of the ODOT projects on the financially constrained roadway
capital improvements list have cost estimates developed specifically for each project as part of the 2011 update of the RTP. These ODOT cost estimates considered the project scope, current full-cost estimates for activities necessary to implement each project, adjusting cost estimates to reflect current 2011 dollars and more. In the future, projects proposed for inclusion on a financially constrained project list must have up-to-date complete scope and cost estimate information available in order to be considered during the financial constraint process.

Proposed projects have been categorized according to facility type and project type. Actual construction cost data for a range of projects, as well as current unit cost assumptions, were obtained from local jurisdictions. These data were analyzed and average per-lane-mile unit costs were calculated for various facility/project types. This information was supplemented through direct conversation with local transportation officials regarding recent costs for smaller-scale projects such as traffic signals, intersection improvements, long-range capacity studies, etc.

Where project-specific cost analysis data were available from more detailed studies (i.e., I-5/Beltline Highway) these cost estimates were entered directly into the project database.

Total financially constrained roadway costs for the planning horizon through Fiscal Year 2035 are estimated to be approximately $1.46 billion. For details about which capital projects have been included in this total, see the Capital Investment Action project lists beginning on page 14.

Roadway System Revenues

Federal and state revenue projections were provided by ODOT in a document titled Financial Assumptions for the Development of Metropolitan Transportation Plans in 1995 (updated most recently in 2011). Most of the revenue projections of federal and state funds used in the RTP are based on the projections provided in this document. The RTP financial analysis is based on the latest ODOT projections available. Other local roadway revenue estimates were developed by an interjurisdictional staff team.

The estimate of State Highway Trust Fund revenues is based on the assumptions that the state gas tax would increase an average of 1.00¢ per gallon per year beginning July 1, 2005, and that the TPR requirements for reducing vehicle miles traveled (VMT) per capita would not be met. There is a further assumption that the biennial state vehicle registration fee would increase $15 every 8 years beginning July 1, 2013.

Lane County staff provided the estimate of federal forest receipts in 2002. In the 2004 update, the revenue was assumed to continue at federal guarantee levels through 2007. For the 2007 update of the RTP, the scenario was a four year extension of the guarantee legislation, with declining funding percentages of 90, 80, 70, and 40 percent. Beyond that, it was assumed that the federal timber payment guarantee legislation would be eliminated. This RTP continues the assumptions from the 2007 RTP, with the recognition that there is extreme uncertainty about this revenue source. Lane County is experiencing upward pressure on expenses with flat or declining revenues. Major changes in County revenue strategies and spending priorities will likely be needed to re-balance County Road Fund finances. The County-City Partnership payments were terminated in fiscal year 2006-07. Lane County’s budgets for OM&P, as well as modernization,
Some revenues such as **assessments** and **systems development charges** (SDCs) may only be used for capital projects. These two revenues sources fund most of the city collector and arterial roadway projects that involve urban standards. Other revenues are flexible and may be used for any road-related purpose including O&M and capital projects. Revenues are summarized with the costs in Table 4.

Transit System Costs and Revenues

Transit system finances are largely independent of other transportation systems, and are therefore analyzed separately. Revenues and expenses are consistent with LTD’s long-range financial plan. The capital costs and revenues are consistent with the long-range capital plan. Assumptions about grant revenue amounts are significantly different than they are in the Capital Plan as they have been reduced to cover only the first phase of the BRT project.

Transit System Costs

Transit capital cost estimates are based on the assumptions that the BRT project will proceed with primary focus on the development of an east-west pilot corridor, that Park-and-Ride facilities will be added on major corridors as the need is identified and suitable sites are selected, and that fleet expansion and vehicle replacement will continue at a rate determined by service level needs.

Transit costs include the third phase of the BRT project. BRT includes many potential elements that will need to be carefully reviewed and evaluated. Until this engineering work is completed and decisions are made on the extent and timing of the long-term development of the BRT corridors, it is very difficult to provide a more accurate cost estimate for the BRT system.

Transit System Revenues

Transit revenue estimates are based on assumptions that overall federal grant funds in support of capital projects will increase, that fare revenue will continue to increase as it has over the last two years, and that payroll tax receipts will increase over the planning horizon due to growth in employment and wages.

It is anticipated that discretionary federal grant funds will pay for up to 80 percent of the capital cost of the BRT system. This expectation is consistent with the District’s previous success in obtaining federal funds. During the past ten years, the District has been awarded discretionary federal funds for a new downtown Eugene transit station ($9 million), a new downtown Springfield transit station ($5 million) and bus rapid transit planning and construction funds for the first two BRT corridors. In addition, there is considerable enthusiasm at the federal level for LTD’s BRT project, as it is seen as a low-cost and effective alternative to light-rail. This enthusiasm should translate into funding support, as evidenced in the proposed transportation reauthorization bill which includes a “Small Starts” funding category within the federal 5309 discretionary program. This new category is being proposed to allow smaller projects, like BRT,
to better compete for federal discretionary funding. Therefore this revenue source meets the legal requirement that it is reasonably expected to exist.

Bicycle and Pedestrian System Costs and Revenues

The RTP bicycle element estimates costs for bicycle projects that are independent of the road projects such as multiple-use paths and bridges and new on-street paths that do not happen to coincide with a roadway project. On-street bicycle lanes comprise a majority of the bicycle facilities recommended in the RTP and will for the most part be funded as a component of future roadway improvements or reconstruction. Signing designated bicycle routes is relatively inexpensive and is normally funded under the roadway maintenance budget.

Bicycle and Pedestrian System Costs

Approximately $51 million in bike projects have been identified in the fiscally constrained RTP. Most of the cost is in multiple use path, or bridge projects. Costs have also been estimated for other road-related bike projects that have not been included in road project costs.

Additional path, bridge, or connector projects have been designated in the RTP as being future projects, meaning that they are either strictly for recreational use, that land use activities such as active gravel mining currently do not allow them to be built, or that funds have not yet been identified for their completion. However, many of these projects could be built within the RTP planning horizon if additional funding sources emerge.

OM&P of the bike and pedestrian system within the road right-of-way is included in the costs for the street and highway system. There currently is no dedicated source of revenue or other special revenues for this work. A transportation utility fee (or transportation system maintenance fee) could be used to provide revenues for the OM&P of the off-street system.

Bicycle and Pedestrian System Revenues

Federal Funding

Currently under SAFETEA-LU, 10 percent of Surface Transportation Program (STP) funds allocated to the state must be used for transportation enhancement activities, including construction of facilities for bicycles and pedestrians. SAFETEA-LU's predecessor, TEA 21, has been the primary funding source for off-street projects built in the Eugene-Springfield area since its authorization in 1998. A major issue for local jurisdictions is identifying the required local match.

State Funding

State funding for bikeways is primarily limited to money from the ODOT Highway Fund. This funding is used mainly for adding bicycle lanes to existing and new streets. These funds may also be used for bicycle projects that are independent of other road construction as long as the project is within highway right-of-way. Highway Funds cannot be spent on paths in parks or anywhere else outside the highway, road, or street right-of-way.
Recently, ODOT funded independent bikeway projects in conjunction with highway modernization projects, including the I-5 path and bike bridge. It is expected that ODOT will finance the construction of the bike paths associated with later phases of Beltline.

Other Funding
Although State Highway Fund and SAFETEA-LU money provides the basic funding source for bikeways, local jurisdictions may also provide revenues from local sources such as general funds, park district funds, special bond levies, and systems development charges, as well as through the local road construction and maintenance budget.

Flexibility of Federal Surface Transportation Revenues
Federal STP funds are not restricted to roadway projects. They have been used in this region for TDM, bike, and transit projects. Local jurisdictions have the authority to allocate some of these revenues to local projects.

Assessment of Revenue Shortfall
The level of transportation needs and the amount of revenues available to pay for the needs depend on several key factors such as the amount of congestion the region is willing to accept, and the timing and allocation of resources among the various components of the system. Figure 6 illustrates some of the interrelationships among key factors contributing to the RTP’s financial constraint. In the process of making decisions on the package of transportation investments contained in the RTP, it is important to consider the tradeoffs that can arise from changes in individual factors. A discussion of these factors and tradeoffs and a description of the revenue shortfall under the RTP assumptions follows.

Factors That Affect the Revenue Shortfall
As presented, transportation improvements necessary to support the land use pattern established in the Eugene-Springfield Metro Plan and the Coburg comprehensive plan arise from several sources. Population and employment growth and existing travel behavior contribute to a growth in transportation demand. Increased demand necessitates adding to the existing system (road, bus, bike, and pedestrian) through specific system improvements. The need for system improvements is also affected by: deficiencies in the existing system, decisions about system standards (such as level of service/congestion and pavement condition) to be provided on the region’s transportation facilities, and the level and effectiveness of strategies like TDM measures, investments in alternative modes, future land use patterns, and the timing of projects.
Figure 6
Key Factors That Affect Financial Constraint

- Population and Employment Growth (Economic Development)
- Growth in Transportation Demand
 - Existing Travel Behavior
 - Level of Service Standards
 - Congestion Levels
- Transportation Improvements Necessary to Support MetroPlan Land Uses
 - Existing System Deficiencies
 - Timing of Projects
 - Effectiveness of TDM and Land Use Measures
 - Vehicle Miles Traveled per Capita Targets

- Costs Required to Meet Needs (Revenue Requirements)
- Financial Constraint (Revenues Reasonably Expected to be Available over Planning Period)
- Revenue Shortfall
 - Identify Project Priorities
 - Identify New Local Revenue Sources
System improvement needs can also be affected by the requirement to meet national air quality standards and the VMT per capita targets specified in the state’s TPR. In some cases, where an improvement reduces congestion, air quality can be improved. An improvement that has the affect of significantly increasing the number of vehicle trips can cause a decrease in air quality. Overall, the Central Lane area is expected to experience improved air quality over the next 20 years. In isolation, major system improvements can appear to have the affect of increasing VMT per capita. These factors were considered in the technical analysis and identification of transportation system needs.

In addition to system improvements, the plan must also consider the resources required to adequately operate, maintain, and preserve the existing and future transportation system. The need for ongoing O&M applies to all parts of the overall system including roadways, transit vehicles, bikeways, and sidewalks. The level of O&M need is affected by the general size of the system, and the function of the roadway system (freeway, arterial, collector).

The level of roadway system preservation needs is affected by roadway preservation standards. The goal in the Central Lane area is to maintain, through OM&P activities, a level of 80 percent of the system miles rated at fair or better condition. Adequately funding OM&P needs avoids the much higher costs associated with reconstruction of the system.

The combination of system improvement costs and the costs of OM&P activities represents the total costs required to meet future transportation needs in the region. The region’s ability to provide for these needs is constrained by the revenues reasonably expected to be available over the 20-year planning period.

The revenue shortfall can be addressed through the establishment of priorities or the development of additional revenue sources.

Conclusions About the Revenue Shortfall

The following conclusions are drawn from current analysis of the revenue shortfall:

1) Eugene and Springfield have the ability to fund most of their collector and arterial roadway projects involving upgrades to urban standards through the combined use of assessments and SDCs.

2) Eugene and Springfield *may* have more difficulty finding resources for new facilities (e.g., Booth Kelly Road).

3) The local cities have a significant shortfall in resources for OM&P of the current roadway system.

4) Lane County's current policy calls for the use of available resources for the OM&P of the current roadway system first, but reductions in federal timber guarantee funding (either immediate or delayed if continuing legislation is approved) will mean that a shortfall in OM&P will develop without increases in revenues or reduced service levels and costs.
5) Lane County has projected a shortfall in modernization funding. The Lane County Capital Improvement Program (CIP) has been reduced drastically in scope. Modernization funding levels will depend on congressional action on federal timber receipt issues, legislative action on the state-wide gas tax, development of local revenue sources, and priority-setting by the County Board of Commissioners. In this 2011 RTP update, Lane County has continued to place several large projects on the illustrative project list as a first response to a shortage of modernization funding.

6) ODOT lacks resources for modernization and OM&P, and a significant amount of the identified needs are on the ODOT arterial system, including the freeways.

7) LTD has projected sufficient resources to maintain the current transit service level and expects to be successful in obtaining federal resources to implement the BRT system.

8) There are no existing transportation resources for the OM&P of the off-street bike system outside of the public right-of-way.

9) Recent history indicates that federal enhancement resources should be reasonably available for the majority of the planned off-street bike path modernization projects.

Strategies to Address Revenue Shortfall

As described at the beginning of the financial plan, the RTP is required to be constrained by revenue “reasonably expected to be made available” (federal requirement) and demonstrate its ability to support the land use pattern present in the local comprehensive plans. The revenue shortfalls identified above can be addressed through either one of two primary means: a prioritization of needs (and the resulting movement of low-priority unfunded needs to a future project list), or the development of new revenue sources. This section presents possible strategies to address the anticipated revenue shortfall, suggesting factors to consider in establishing priorities and outlining the range of new revenue sources.

1. Increased Federal and State Taxes and Fees

Develop a united front to support state and federal efforts to develop additional transportation resources and obtain an equitable share of those resources for the metro area.

2. Accept Lower Level of Service

Establishing a set of needs within the limits of available resources can be accomplished by assigning a priority to specific projects or categories of projects. The major issues surrounding the level and priority of transportation system needs can be identified by assessing the tradeoffs that come with varying the acceptable level of congestion on roadways. A key policy tool in this discussion is level of service (LOS) standards. These standards are set to reflect the region’s willingness to accept a certain level of congestion on its roadway system. Generally, lowering LOS standards will have the effect of reducing the need for system improvements. Accepting increased congestion allows some system improvements to be postponed. Conversely, maintaining higher LOS will require more system improvements to reduce the amount of
congestion. The table below highlights some of the tradeoffs associated with different levels of congestion.

<table>
<thead>
<tr>
<th>Policy Choice</th>
<th>Impact on Standard</th>
<th>Potential Tradeoffs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept More Congestion</td>
<td>Lower Level of Service</td>
<td>Reduce system improvement costs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduce air quality in specific areas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase hours of delay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase vehicle operating costs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase accidents</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase traffic infiltration into neighborhoods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase use of alternative modes</td>
</tr>
<tr>
<td>Accept Less Congestion</td>
<td>Raise Level of Service</td>
<td>Increase system improvement costs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase air quality in specific areas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduce hours of delay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduce vehicle operating costs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduce accidents</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduce traffic infiltration into neighborhoods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduce use of alternative modes</td>
</tr>
</tbody>
</table>

Other policy tools exist that can affect congestion levels. This plan is based on the use of a range of land use, TDM, and TSI measures to address the issues associated with congestion. In the long run (beyond the 20-year planning horizon), land use measures implemented in the planning period can have an affect on congestion levels. TDM measures can be used in the short run to affect demand at specific locations, though voluntary measures can only contribute to a reduction in congestion, not provide the full solution.

Thus, the primary set of actions available to address congestion in the planning period are the system improvement actions described in other sections of this chapter. Development of system improvement priorities should be based on a consideration of some of the tradeoffs highlighted above. In particular, it will be important to identify which projects can be postponed without significant degradation to the roadway system’s LOS. These might include ODOT freeway projects, interchanges, or local projects without identified funding sources.

3. **Special Road Funding Opportunities**

Identify special road funding opportunities to take advantage of state and federal resources such as Immediate Opportunity Funds, federal demonstration grants, or state or federal economic development grants.

4. **Stormwater Management**

Establish a stormwater utility fee for the area between the city limits and the urban growth boundary (UGB) and apply user fee revenues to augment Lane County road fund expenditures on roadway drainage projects.
Use Eugene and Springfield stormwater SDCs for the eligible drainage component of Lane County road modernization projects within the UGB.

5. Transportation Utility Fee
A Transportation Utility Fee (TUF), or transportation system maintenance fee, is analogous to a stormwater user fee. Each developed property within an area is charged a monthly fee for their anticipated use of the transportation system. These fees are determined by a methodology that is usually based on the trip-making characteristics of the land use type and becomes a fixed fee for that user. The fees can be collected on water utility bills just as sanitary and stormwater fees are currently. The fees can be set to generate any amount of revenue but are typically designed to cover a portion of ongoing O&M or to pay for preservation activities. The revenue is flexible and may be used for any purpose reasonably related to use of the public-sector transportation system, including maintenance of off-street bike and pedestrian facilities. These fees are typically not used for capacity-increasing projects because they are paid by existing users of the system.

6. Increased Systems Development Charges
There are several potential revenue-enhancing revisions to the existing Coburg, Eugene and Springfield SDC methodologies and rate structures that could be explored.

The transportation SDC methodologies could be revised to include the impact on county arterials and collectors and to ensure that wherever possible, the combination of assessments and SDCs cover 100 percent of the costs of the local arterial and collector street projects. One estimate showed that such a revision in the Eugene-Springfield area would increase revenues by approximately $7.6 million over 20 years, increasing the transportation SDCs by about 21 percent.

The transportation SDC could also be expanded in the future to include capacity increasing transit facilities should transit revenues be insufficient to maintain the current level of service as growth occurs.

Another component that could be added to the local SDC rate structure would be one that addresses the local contributions Coburg, Eugene and Springfield make to state roadway projects. These local expenditures on state projects are not currently included in the calculation of the SDCs.

7. Transfer of Jurisdiction
A transfer of certain ODOT facilities to local jurisdictions in exchange for state assumption of locally owned segments of the National Highway System might allow for the use of local revenues (assessments and SDCs) on facilities that are unlikely to be improved by the state during the planning period.
Modernization projects could then be funded from a combination of assessments, transportation, and storm water SDCs and possible Lane County Road Fund contributions—revenue sources that are currently unavailable at the state level. However, in addition to handing over responsibility for costs, a transfer of ODOT facilities would also result in a reduction in revenues to the local ODOT district office because those revenues are partly dependant on total lane miles within the district. This reduction in revenue would result in the ODOT system improvements line item still showing a shortfall.

8. **Accept Lower Standards in Operations, Maintenance, and Preservation**

The standards applied to the OM&P of the transportation system determine the need for transportation revenues. This strategy consists of revisiting those standards to determine whether or not they are in line with priorities. In addition to the LOS (congestion) standard discussed above, other OM&P standards could be changed. Two possible strategies of this type are to eliminate maintenance on local gravel roads or on unimproved streets (streets with a thin surface treatment). Eliminating maintenance on metro area gravel local roads would save an estimated $1.6 million over 20 years. Eliminating maintenance on unimproved local streets would save about $5.8 million over the same period.

9. **Bond Measures**

Property-tax based measures, including capital bonds and levies, may be used to fund transportation activities. Both Eugene and Springfield have recently included street preservation projects in a bond levy. The City of Salem has used property-tax based serial levies a number of times in the past decade for preservation and modernization. Under Ballot Measure 50, capital bonds can be issued for a maximum of ten years and must be approved by the voters at a general election or with 50 percent turnout.

10. **Regional Transportation Taxes**

Eugene and Springfield currently impose local gas tax equivalents of 5¢ and 3¢ per gallon, respectively. Coburg currently imposes a local gas tax equivalent of 3¢ per gallon (non-diesel). Additional local or regional gas taxes and/or vehicle registration fees, or an increase in the existing tax, could be developed to fund the remainder of the gap in financing for the non-state road network. Each 1¢ of gas tax would generate about $1.2 million countywide. The current state tax is 30¢ and is shared among the state, counties, and cities. A simple gas tax does not include a comparable weight-mile tax for trucks, such as what the state currently has.

Motor vehicle registration fees may be imposed by counties with a county-wide vote. The registration fee may not exceed that of the state, currently $86 per two-year period for a passenger car. The funds must be shared with the cities within the county. Two or more counties may act jointly. A $15 vehicle registration fee in Lane County would generate about $5 million annually.
11. Bridge Tolls
Bridge tolls may be used to provide revenues for the construction of specific bridges. For example, tolls could be used to fund the construction of new river crossings. These tolls could be removed when construction has been paid in full, or could remain in place to fund OM&P of the bridge.

12. Broadened Assessment Practices
Under Oregon law, local improvement districts may be used to assess property owners for improvements that benefit the properties. Local agencies use local improvement districts to assess property owners for the initial street improvement resulting in a fully improved street, usually including, curbs, gutters, and sidewalks. Some jurisdictions have begun using improvement districts to assess property owners for preservation and reconstruction projects. Other jurisdictions are using them to fund ongoing O&M activities through an annual assessment. These may occur when streets need pavement overlays or when the street has reached the end of its useful life and needs to be reconstructed. The potential yield from this policy has not been estimated but potentially could fund a significant portion of the preservation needs. Remonstrance provisions in local codes may preclude the use of this tool unless property owners approve.

13. Postpone Project to Illustrative Projects List
Prioritize projects and postpone projects based on availability of revenue. Postponed projects would be moved to the appropriate illustrative project list within the RTP, pending availability of additional revenues.

Development of Constrained Plan
Table 4 shows that under current RTP assumptions about standards, priorities, and timing, the region faces a $773-798 million revenue shortfall over the planning horizon through Fiscal year 2035. The majority of the shortfall occurs in two areas—OM&P in general, and ODOT System Improvements.

To arrive at a financially constrained plan, a process was developed to consider the applicability of the various strategies to the individual line item revenue shortfalls shown in Table 4. The process included a determination of the regional priorities through the public review process and careful consideration by both inter-jurisdictional staff and policy groups of the applicability of individual strategies to each shortfall, among other steps. Not all of the strategies were considered appropriate for use (e.g., there was consensus that strategy #10 - Regional Transportation Taxes was not a viable local option and that the use of strategy #7 - Transfer of Jurisdiction would result in no net improvement in the cost/revenue picture). In most cases, packages of strategies were employed to address the shortfalls.

The Potential Strategies column in Table 4 shows the results of this process. Each line item revenue shortfall is addressed by one or more strategies. Where the Postpone Projects strategy is
shown under System Improvements, the result is a movement of projects to the future projects list, thus removing the associated costs from the current plan.

Similar to the Postpone Projects strategy is the Accept Lower Pavement Condition Ratings strategy under OM&P. This strategy means that the overall pavement condition rating (PCR) standards will be lowered, resulting in a reduction in specific OM&P activities since the road surfaces will be maintained at a lower level. This results in a smaller percent of the road surface having a fair or better rating at any one time and reduces OM&P costs.

Other strategies are also intended to either directly reduce costs or increase revenues, resulting in a financially constrained plan. Table 5 and the following text describe the specific application of the strategy packages and show the resulting financially constrained costs and revenues.
TABLE 4
RTP COSTS & REVENUES and STRATEGIES
($ Millions)

<table>
<thead>
<tr>
<th>Local (Coburg, Eugene, Lane County, Springfield) Components</th>
<th>Cost</th>
<th>Revenue</th>
<th>Shortfall</th>
<th>Potential Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations, Maintenance & Preservation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eugene Operations, Maintenance & Preservation</td>
<td>$418</td>
<td>$240</td>
<td>$178</td>
<td>Implement New Local Revenue Source(s), Accept Lower Pavement Condition Rating(s) (PCR), Reduce Operations & Maintenance Service Levels</td>
</tr>
<tr>
<td>Springfield Operations, Maintenance & Preservation</td>
<td>$139</td>
<td>$90</td>
<td>$49</td>
<td>Implement New Local Revenue Source(s), Accept Lower PCR, Reduce Operations & Maintenance Service Levels, Use Bonding for Preservation Increase in shortfall is expected as federal revenues decline and costs increase, but has not been calculated in this update due to extreme uncertainty. Implement new local revenue sources, accept lower pavement condition ratings, reduce maintenance service levels.</td>
</tr>
<tr>
<td>Lane County Operations, Maintenance & Preservation</td>
<td>$156</td>
<td>$139</td>
<td>$17</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>$713</td>
<td>$469</td>
<td>$244</td>
<td></td>
</tr>
<tr>
<td>System Improvements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City Arterial/Collector System Improvements</td>
<td>$214</td>
<td>$198</td>
<td>$16</td>
<td>Postpone Projects to Illustrative List</td>
</tr>
<tr>
<td>Lane County System Improvements</td>
<td>$105</td>
<td>$50</td>
<td>$55</td>
<td>Postpone Projects to Illustrative List</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$319</td>
<td>$248</td>
<td>$71</td>
<td></td>
</tr>
<tr>
<td>Bike System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Bike/Ped Operations, Maintenance & Preservation</td>
<td>$7</td>
<td>$7</td>
<td>-</td>
<td>Include in New Local Revenue Source(s)</td>
</tr>
<tr>
<td>Local Off-Street & On-Street (without Road Project) Bike System Improvements</td>
<td>$107</td>
<td>$51</td>
<td>$56</td>
<td>Postpone Projects to Illustrative List or Do Not Build (note that additional Bike System improvements are incorporated in Road Projects)</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$114</td>
<td>$58</td>
<td>$56</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$1,146</td>
<td>$775</td>
<td>$371</td>
<td></td>
</tr>
<tr>
<td>Lane Transit District (LTD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTD Operations, Maintenance & Preservation (OM&P)</td>
<td>pending</td>
<td>pending</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTD System Improvements</td>
<td>$600</td>
<td>$416</td>
<td>$184</td>
<td>Postpone Projects to Illustrative List and Pursue Additional Funding or Do Not Build without pending OM&P figures</td>
</tr>
<tr>
<td>Total</td>
<td>$600</td>
<td>$416</td>
<td>$184</td>
<td></td>
</tr>
<tr>
<td>Oregon Department of Transportation (ODOT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODOT Operations, Maintenance & Preservation</td>
<td>pending</td>
<td>pending</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODOT Facility Planning Studies*</td>
<td>$10.5</td>
<td>$10.5</td>
<td>-</td>
<td>No Shortfall</td>
</tr>
<tr>
<td>ODOT System Improvements</td>
<td>$538</td>
<td>$295-320</td>
<td>$218-243</td>
<td>Postpone Projects to Illustrative List or Do Not Build without pending OM&P figures</td>
</tr>
<tr>
<td>Total</td>
<td>$549</td>
<td>$306-331</td>
<td>$218-243</td>
<td></td>
</tr>
<tr>
<td>GRAND TOTAL</td>
<td>$2,295</td>
<td>$1,486-1,522</td>
<td>$773-798</td>
<td></td>
</tr>
</tbody>
</table>

All figures are rounded and are shown in 2011 dollars and are for the planning horizon through FY 2035.

*ODOT Facility Planning Studies are shown for information purposes only.
TABLE 5

CONSTRAINED RTP COSTS & REVENUES

($ Millions)

<table>
<thead>
<tr>
<th>Local (Coburg, Eugene, Lane County, Springfield) Components</th>
<th>Cost</th>
<th>Revenue</th>
<th>Shortfall</th>
<th>Comments on Constraint(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations, Maintenance & Preservation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eugene Operations, Maintenance & Preservation</td>
<td>$418</td>
<td>$418</td>
<td>-</td>
<td>Implement new locally controlled source of revenue</td>
</tr>
<tr>
<td>Springfield Operations, Maintenance & Preservation</td>
<td>$134</td>
<td>$134</td>
<td>-</td>
<td>Apply Combination of Strategies</td>
</tr>
<tr>
<td>Lane County Operations, Maintenance & Preservation</td>
<td>$156</td>
<td>$156</td>
<td>-</td>
<td>No Shortfall. Adjusted maintenance budget not calculated in this update, but budget will decline if revenues do not cover this amount or projected cost. Apply strategies shown in Table 4.</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$708</td>
<td>$708</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>System Improvements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City Arterial/Collector System Improvements</td>
<td>$198</td>
<td>$198</td>
<td>-</td>
<td>Postpone Projects to Illustrative List</td>
</tr>
<tr>
<td>Lane County System Improvements</td>
<td>$ 50</td>
<td>$ 50</td>
<td>-</td>
<td>Postpone Projects to Illustrative List</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$248</td>
<td>$248</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bike System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Bike/Ped Operations, Maintenance & Preservation</td>
<td>$ 7</td>
<td>$ 7</td>
<td>-</td>
<td>Include in New Local Revenue Source(s)</td>
</tr>
<tr>
<td>Local Off-Street & On-Street (without Road Project) Bike System Improvements</td>
<td>$ 51</td>
<td>$ 51</td>
<td>-</td>
<td>Postpone Projects to Illustrative List or Do Not Build (note that additional Bike System improvements are incorporated in Road Projects)</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$ 58</td>
<td>$ 58</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$1,014</td>
<td>$1,014</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Lane Transit District (LTD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTD Operations, Maintenance & Preservation</td>
<td>pending</td>
<td>pending</td>
<td></td>
<td>Postpone Projects to Illustrative List and Pursue Additional Funding or Do Not Build</td>
</tr>
<tr>
<td>LTD System Improvements</td>
<td>$416</td>
<td>$416</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$416</td>
<td>$416</td>
<td>-</td>
<td>without pending OM&P figures</td>
</tr>
<tr>
<td>Oregon Department of Transportation (ODOT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODOT Operations, Maintenance & Preservation</td>
<td>pending</td>
<td>pending</td>
<td></td>
<td>No Shortfall</td>
</tr>
<tr>
<td>ODOT Facility Planning Studies*</td>
<td>$ 10.5</td>
<td>$ 10.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ODOT System Improvements</td>
<td>$295-320</td>
<td>$295-320</td>
<td>-</td>
<td>Postpone Projects to Illustrative List or Do Not Build</td>
</tr>
<tr>
<td>Total</td>
<td>$306</td>
<td>$306-331</td>
<td>-</td>
<td>without pending OM&P figures</td>
</tr>
</tbody>
</table>

GRAND TOTAL

$1,736 $1,736-1,761 $ - without pending LTD and ODOT OM&P figures

All figures are rounded and are shown in 2011 dollars and are for the planning horizon through FY 2035.

*ODOT Facility Planning Studies are shown for information purposes only.
The text below provides an expanded explanation of the specific strategies shown on each line item in Table 4.

Operations, Maintenance & Preservation

Eugene
- Increase revenues through a locally controlled source of revenue equitably tied to all users of the transportation system that would provide revenues that could be used to address OM&P needs. Revenues shall be set at a level that ensures that the improved roadway and bike system at least falls no further behind in its condition of repair. As needed to maintain system condition, the Eugene City Council shall adopt at least one revenue source such as:
 1. Assessments
 a. Broadened assessment practices/local improvement district
 b. Broadened use of system development charges
 2. Property Taxes
 a. General obligation bonds backed by a property tax levy
 b. Local option property tax levy
 3. Excise Taxes
 a. Business tax on fuel distribution
 b. Local option motor vehicle fuel tax
 c. Parking tax
 d. Carbon-based fuel tax
 e. Motor vehicle excise tax
 f. Vehicle registration fees
 4. User/Utility Fees
 a. Transportation utility fee
 b. Street improvement fee
 c. Municipal sticker fee (local vehicle public parking permit)
 d. Tolls
 e. Fees to compensate for dedicated use of traffic lanes for transit purposes
 f. Employer payroll tax

Springfield
- Implement a locally controlled source of revenue equitably tied to all users of the transportation system that would provide revenues that could be used to address OM&P needs.
- Decrease costs via acceptance of reductions in the PCR indicators by functional class.
- Lower overall operations and maintenance service levels.
Lane County
- Implement a locally controlled source of revenue, such as a local option gas tax or motor vehicle registration fee, that could be used to address OM&P needs.
- Decrease costs via acceptance of reductions in the PCR indicators by functional class.
- Lower overall operations and maintenance service levels.

Transit
- *No revenue shortfall*

ODOT
- Decrease costs via acceptance of reductions in the metropolitan area PCR indicators by functional class.

System Improvements

Cities
- *No revenue shortfall*

Lane County
- Decrease costs by postponing or not building projects, moving those projects to an illustrative project list. Consider implementation of transportation System Development Charges (SDC).

Transit
- Decrease costs by postponing or not building projects, moving those projects to an illustrative project list.

ODOT
- Decrease costs by postponing or not building projects, moving those projects to an illustrative project list.

Bike System

Bike/Pedestrian OM&P
- Increase revenues through the inclusion of bike/pedestrian OM&P in a new locally controlled source of revenue

Local Off-Street Bike
- Decrease costs by postponing or not building projects, moving those projects to an illustrative project list.

Local On-Street Bike w/o Road
- Decrease costs by postponing or not building projects, moving those projects to an illustrative project list.
Application of Strategy Packages and Attainment of a Financially Constrained Plan

For those line items that show revenue shortfalls in Table 4, application of the strategy packages described above results in elimination of the shortfalls. This action achieves a financially constrained plan as required, one that plans for projects within the constraint of available revenues. Specifically:

Operations, Maintenance & Preservation

Eugene

- A new locally controlled source of revenue will be implemented to generate revenue to cover the shortfall over the planning time horizon.

Springfield

- Overall maintenance service levels are assumed to decrease by an amount equal to 10 percent of the shortfall, or approximately $12 million.
- A new locally controlled source of revenue will be implemented to generate revenue to cover the remainder of the shortfall over the planning time horizon.

Lane County

- Overall maintenance service levels are assumed to decrease by an amount necessary to resolve the shortfall, once it is calculated.
- A new locally controlled source of revenue will be considered, and if implemented, will allow restoration of previous service levels for maintenance.

ODOT

- The district ODOT office will decrease costs via acceptance of reductions in the metropolitan area PCR indicators by functional class. The current PCR on state facilities in the metropolitan area is 98 percent fair or better. The State plan indicates the state-wide system goal over the planning horizon is a measure of 77 percent fair or better. Reducing the ODOT OM&P costs by the amount of the shortfall will still allow the district to meet the state standard over the planning horizon, although the road condition ratings will be lower than they currently are.

System Improvements

ODOT

- The district ODOT office will decrease costs by postponing or not building projects, moving those projects to an illustrative project list. Pending additional revenues, these projects may be moved to a financially constrained project list in the future.

Bike System

Bike/Pedestrian OM&P

- The revenue shortfall in this area will be addressed by the inclusion of bike/pedestrian OM&P in a new locally controlled source of revenue.
The above strategy packages will result in a financially constrained RTP over the planning horizon through Fiscal year 2035. Transit activities, local system improvements, and most bike and pedestrian projects are not financially constrained and can be funded at the full level projected. OM&P in the city and state systems will be reduced somewhat, but still meet applicable policy standards. The cities, and perhaps Lane County, will also implement a new locally controlled source of revenue to raise additional OM&P revenues. State system improvement projects will be built on a priority basis as revenues allow, with the remaining unfunded improvement projects placed on a future projects list pending additional revenues.
Part Three: Regional Transportation Plan
Amendment Process
This section outlines the process for amending the Regional Transportation Plan

Requirements
The Regional Transportation Plan (RTP) can be amended at any time consistent with CFR 450.322 – the federal guidelines on preparation of RTPs. Essentially, amendments must be shown to meet the same requirements as the original plan. These requirements include financial constraint, air quality conformity, and adequate public involvement.

In general, amendments would be processed by staff to assess financial constraint, air quality conformity, and establish appropriate public involvement. Draft amendments would be considered by both the Transportation Planning Committee (TPC) and the Citizen Advisory Committee (CAC). Recommendations from both committees would be forwarded to MPC for public hearing and final action. Typically, adoption of amendments would also require adoption of an updated air quality conformity determination. The existing state rule on air quality conformity requires that, with the exception of minor amendments, the Metropolitan Transportation Improvement Program (MTIP) be updated within six-months of updates to the RTP.

Categories of Amendments
Plan amendments would typically fall in to 4 categories:

a. Changes to the existing Financially Constraint project list – these changes could entail either dropping a project off the list or adding or reducing the level of funding assigned to a given project,
b. Addition of federally funded or regionally significant projects to the Financially Constraint project list – these changes would entail the addition of projects to the Constrained list from either the RTP Illustrative Project List or other sources,
c. Changes required to meet federal requirements – these changes would be in response to changes in federal requirements or could result from changes in federal funding (typically at points of reauthorization of federal transportation legislation). These changes could entail either changes to policy or projects.
d. Changes to local Transportation System Plans that need to be reflected in the RTP – these changes could be based upon changes in local comprehensive plans, or addition or deletion of federally-funded or regionally significant projects from the local TSP due to changes in local priorities.

Consistency between local Transportation System Plans and the Regional Transportation Plan
Local initiatives that prompt amendments to a local TSP commonly prompt amendments to the RTP. Changes in the RTP brought about by changes in federal or state requirements or by the addition of projects or policies can also lead to amendments to local TSPs. Differences between
the federal and state requirements and timelines that govern the Regional Transportation Plan and the state and local requirements and timelines that govern local Transportation System Plans can sometimes lead to temporary inconsistencies between the RTP and the local TSPs.

With respect to RTP amendments, amendments that are not required to facilitate implementation of specific projects would normally be scheduled to take place as part of a regular 3-year update cycle. Amendments needed to facilitate the implementation of projects could be processed within the time it takes to conduct the required analyses (for financial constraint and air quality conformity) and public notice; typically 2-3 months.

Local TSPs are subject to the requirements of the Transportation Planning Rule and other state land use law. Amendments and the timing of those amendments would be in the context of meeting those requirements and other local needs. For example, if a change was made to the Regional Transportation Plan in order to meet federal requirements, an assessment would have to be made to determine if a corresponding change to the local transportation system plans would have to be made shortly after the RTP amendment or whether it could wait until the next regular update of the local TSP.

The need to coordinate changes to the plans stems primarily from the need to move the implementation of specific projects forward. The specific federal or state requirements for the RTP and TSPs determine whether the plans need to be made consistent in the short run (to allow projects to proceed) or whether inconsistencies can wait to be resolved until points of regular update.

Part Four: Air Quality Conformity
This section summarizes the air quality conformity analysis required by federal legislation.

Requirements
In nonattainment and maintenance areas, transportation plans and programs that are financed wholly or partly with federal funds are required to be in conformance with the transportation provisions of the State Implementation Plan (SIP) — the state-wide planning document that demonstrates how the state will attain the National Ambient Air Quality Standards (NAAQS). Conformity with a SIP means conformity to a SIP’s purpose of eliminating or reducing the severity and number of violations of the NAAQS and achieving expeditious attainment of the standards. The Lane Council of Governments (LCOG), as the MPO for the Eugene-Springfield area, must make conformity determinations on the RTP and the MTIP to ensure they conform to the SIP. The Federal Highway Administration and the Federal Transit Administration must also review the RTP and the MTIP and make a conformity determination in order for the projects contained in these documents to be eligible for federal funding or approvals.

The Clean Air Act Amendments of 1990 set the NAAQS for key pollutants, including ozone, \((O_3)\), carbon monoxide (CO), and particulate matter \((PM_{10})\). Areas that do not meet the NAAQS
are designated in varying degrees of nonattainment, from *marginal* to *extreme* (depending on the pollutant). Nonattainment areas must submit air quality implementation plans and must integrate transportation and air quality planning in order to meet the standards. The Eugene-Springfield region is designated as a *maintenance area* for CO and designated as a nonattainment area for PM$_{10}$.

The region has successfully petitioned the Environmental Protection Agency (EPA) that highway and off-highway vehicles are not significant emissions sources of PM$_{10}$, and that transportation is therefore exempt from demonstrating area-wide conformity or from performing PM$_{10}$ hot spot analysis within the air quality management region.

Regional emissions analysis for CO is required for all transportation plans, programs, and projects located within the Central Area Transportation Study (CATS) boundary. The CATS boundary encompasses the greater downtown Eugene area and is bounded by 5th Avenue on the north, 19th Avenue on the south, Lincoln Street on the west, and Agate Street on the east. The RTP is considered to conform when the annual tons of CO are below the Eugene-Springfield area motor vehicle emissions budget for CO. The motor vehicle emissions budget was filed with EPA and published in the Federal Register, Vol. 58, No. 232, page 64163, December 6, 1993.

The federal EPA has adopted new standards for ozone and fine particulate (PM$_{2.5}$) and based upon the existing LRAPA monitoring of these pollutants, this area is currently in attainment with these standards. Therefore, the RTP will not need to address these new standards. However, transportation plans, programs, and projects will continue to be subject to the existing carbon monoxide conformity rules in OAR 340-252.

Analysis

RTP conformity requires a technical analysis of the annual tons of CO generated by the transportation system. Based on the Capital Investment Actions project lists developed for the transportation system, an estimation of vehicle emissions of CO is calculated using the EPA’s recommended guidelines. The emissions for the planning year are compared with the emissions budget established in the area’s SIP.

The conformity analysis will be prepared based on a 24-year forecast (to 2035) of population, employment, and traffic. The analysis will use the RTP Financially Constrained Project Lists in development of the future year networks.

The formal conformity determination will be made as part of the MPO (i.e., MPC) adoption process.
Part Five: Planning and Program Actions

Planning and Program Actions represent a range of regionally significant planning, administrative, and support actions that might be used to implement RTP policies. Local jurisdictions will use their discretion to evaluate and prioritize Planning and Program Action implementation. The Planning and Program Actions are not adopted, meaning they are not binding or limiting to any implementing jurisdiction. Some Planning and Program Actions will lead to additional capital expenditures, others are examples of capital expenditures that might be implemented after further study. For example, a corridor study could lead to system improvements along the corridor. Planning and Program Actions are not subject to the same fiscal constraint requirements as the Capital Investment Actions. However, ongoing funding will be necessary to continue to implement actions such as the region’s TDM program. Planning and program actions are presented for the following categories:

1. Land use,
2. Transportation demand management,
3. Transportation system improvements
 a) System-Wide
 b) Roadways
 c) Transit
 d) Bicycles
 e) Pedestrian
 f) Goods Movement
 g) Other Modes

The Planning and Program Actions listed in this chapter represent a small portion of all transportation planning actions undertaken in the region. Jurisdictions within the region undertake a variety of activities beyond the Planning and Program Actions that implement the RTP policies. Many federal and state requirements that the region must comply with are not included as Planning and Program Actions, as is the case with many ongoing transportation planning programs.

The region’s Unified Planning Work Program (UPWP), an annual report that sets priorities for local transportation planning activities, is a key listing of additional actions. The UPWP describes ongoing programs conducted by the region’s public agencies, including LCOG (Lane Regional Air Pollution Authority, LTD, ODOT, Lane County, and the cities of Coburg, Eugene and Springfield. The UPWP includes actions that the region is required to carry out due to federal and state requirements including those related to:

1. Surveillance, data maintenance, and modeling;
2. Long-range planning;
3. Short-range planning;
4. Refinement studies;
5. Programming;
6. Public involvement; and
7. Air quality.
Land Use Planning and Program Actions

This section provides recommended actions to implement transportation-related land use policies, including recommended approaches for implementing nodal development. The listed implementation actions respond to requirements contained in the state’s TPR, as well as the RTP land use policies. Roadway, transit, and bicycle projects listed in the Capital Investment Actions project lists will help to implement land use policies. Additional Capital Investment Actions may be identified and implemented on a case-by-case basis to support nodal development as deemed appropriate by local jurisdictions.

1. **Nodal Development** *(Reference TPR 660-12-045(4)(g) and (5)(a))*

 1.1. Prior to approving nodal development projects in designated areas, conduct a site analysis to evaluate infrastructure capacity, establish project boundaries, and ensure project compatibility with adjacent land uses.

 1.2. Amend zoning and development codes to remove barriers to nodal development in designated areas.

 1.3. Develop and apply a plan designation that allows development consistent with nodal development guidelines.

 1.4. Prepare specific area plans (or specific development plans) to determine how to achieve the density, mixed-use, and design objectives of nodal development.

 1.5. Develop an overlay zoning/development district for designated nodal development areas that includes guidelines and development or performance standards.

 1.6. Selectively change plan and zoning designations to allow a mix of uses and housing types at higher average densities in areas designated for nodal development.

 1.7. Amend zoning and development codes to add site, landscape, and architectural design objectives, standards, and guidelines for higher density, mixed-use development to ensure compatibility with surrounding uses.

 1.8. Require developers to dedicate land, or money in lieu thereof, for public spaces in nodal development areas.

 1.9. Apply site plan and design review procedures in designated nodal development areas.

 1.10. Provide economic incentives, such as density bonuses and transfers, reduced SDCs, and property tax exemptions, to encourage nodal development.

 1.11. Give priority to constructing and improving public facilities in areas designated for nodal development.

 1.12. Establish a streamlined, coordinated development review process for nodal development.

 1.13. Support public/private joint ventures and demonstration projects to provide successful local examples of nodal development.
1.14. Establish a marketing program that advertises and promotes developments that are consistent with nodal development guidelines.

2. Transit-Supportive Land Use

2.1. Designate areas along major transit corridors and near transit transfer stations for a mix of higher intensity commercial uses along with higher residential densities that achieve at least an average density within the medium-density range for residential uses. (Reference TPR 660-12-045(4)(g))

2.2. Amend zoning and development codes to add a transit-oriented development (TOD) district. (Reference TPR 660-12-045(5)(a))

2.3. Designate appropriate areas along major transit corridors and near transit transfer stations for TODs. (Reference TPR 660-12-045(5)(a))

2.4. Amend zoning and development codes to require all major new institutional and commercial development to provide facilities and access for transit, bicycles, and pedestrians. (Reference TPR 660-12-045(4)(e) and (5)(d))

2.5. Allow existing development to redevelop a portion of existing parking areas for transit-oriented uses, including bus stops and pullouts, bus shelters, Park-and-Ride stations, TODs, bicycle parking, and similar facilities, where appropriate. (Reference TPR 660-12-045(4)(e) and (5)(d))

3. Transportation Impacts

3.1. Establish a process for coordinated review of proposed land use decisions through intergovernmental agreements among local, regional, and state jurisdictions. (Reference TPR 660-12-045(2)(d))

3.2. Coordinate and collaborate with local jurisdictions and ODOT on review of proposed regional land use decisions that could significantly impact major regional transportation facilities. (Reference TPR 660-12-045(2)(d))

3.3. Coordinate and collaborate with ODOT on review of proposed local land use actions that could significantly impact state transportation facilities and systems. (Reference TPR 660-12-045(2)(d))

3.4. Refer land development proposals to appropriate local, regional, and state transportation agencies for review and comment on compatibility with and impact on transportation facilities, projects, and plans. (Reference TPR 660-12-045(2)(d))

3.5. Develop and apply conditions to approved developments when necessary to protect the functional capability of regional transportation facilities. (Reference TPR 660-12-045(2)(e))

3.6. Require traffic impact studies and mitigation measures where appropriate. (Reference TPR 660-12-045(2)(e))

3.7. Make certain that amendments to Metro Plan and land use regulations take into account the impact on regional transportation facilities and do not conflict with capacities and levels of service. (Reference TPR 660-12-045(2)(g))
Nodal Development Implementation Process

The Nodal Development Areas map included in Appendix A identifies areas in Eugene-Springfield that are considered to have potential for establishment of a nodal development land use pattern. Other potential areas may be identified in the future, and some of the identified areas may be considered unsuitable for nodal development upon further analysis or as a result of future land use changes in the area.

Property owners and developers are encouraged to consider following nodal development guidelines when developing or redeveloping parcels in these identified areas. When property owners and developers express interest in following nodal development guidelines in a designated area, local governments will provide assistance by identifying design/development objectives, guidelines, and standards; specifying any additional site analysis needed to establish project boundaries and related improvements; and generally facilitating project review and evaluation. In addition, local jurisdictions may initiate actions to establish nodal development land use patterns in these identified areas.

Approaches taken to establish nodal development land use patterns may need to be different for redevelopment, infill, and new growth areas. Implementation approaches adopted by each jurisdiction will likely include a combination of several methods and techniques. Actual development of an area consistent with nodal development patterns and the specific type of nodal development center will be based on further site analysis, owner/developer interest, and the support of individual jurisdictions. The process for establishing a nodal development area will include the following elements:

1. Confirm potential for nodal development based on established criteria;
2. Determine most appropriate type of nodal development pattern;
3. Identify needed public improvements;
4. Establish boundaries; and
5. Identify any potential conflicts with adjacent uses.

Establishment of new nodal developments will require an amendment to Metro Plan.

Nodal Development Implementation Schedule

Based on its review and approval of the 2002 TransPlan (RTP) Alternative Performance Measures for compliance with the TPR, LCDC adopted the following recommendations to provide guidance to local agencies in the development and implementation of TransPlan:

1. LCOG should amend TransPlan (the RTP) to include a schedule for implementation of the nodal development strategy. This schedule should incorporate the items listed below and the requirements for an “integrated land use and transportation plan” over the next three years.

2. Eugene and Springfield need to specify specific areas for nodal development within one year. TransPlan identifies approximately 50 areas as having potential for nodal development. Eugene and Springfield need to move quickly to pick
which of the 50 areas to designate as nodes and set general boundaries to guide subsequent detailed planning.

3. **Eugene and Springfield need to adopt Metro Plan designations and zoning amendments for the specified nodes within two years after TransPlan adoption.** Currently, most of the identified nodes are planned and zoned to allow continued auto-oriented development. This means inappropriate and poorly designed uses that could easily frustrate nodal development can be located in nodes. To be successful, nodes generally require a mix of mutually supportive pedestrian and transit-friendly uses and a good network of streets. If interim development includes inappropriate uses or is poorly laid out, the result could be to make a much larger area and perhaps a whole node unsuitable for nodal development.

4. **Eugene, Springfield and Lane County need to review plan amendments and zone changes outside nodes to assure that they are consistent with the nodal development strategy.** The success of nodal development strategy depends on attracting most of the higher density employment and residential development in nodes. Certain uses, such as neighborhood shopping centers are critical to the success of nodal development. Plan amendments to allow such uses outside of nodes undermine the nodal development strategy and hurt prospects for development in nodes.

The Integrated Land Use Transportation Plan referenced in the first recommendation is a requirement in the TPR (Section 0035(5)(c)) and includes the following elements:

(A) Changes to land use plan designations, densities, and design standards listed in 0035(2)(a)-(d) as follows:
 (a) Increasing residential densities and establishing minimum residential densities within one quarter mile of transit lines, major regional employment areas, and major regional retail shopping areas;
 (b) Increasing allowed densities in new commercial office and retail developments in designated community centers;
 (c) Designating lands for neighborhood shopping centers within convenient walking and cycling distance of residential areas;
 (d) Designating land uses to provide a better balance between jobs and housing considering:

(B) A transportation demand management plan that includes significant new transportation demand management measures;

(C) A public transit plan that includes a significant expansion in transit service;

(D) Policies to review and manage major roadway improvements to ensure that their effects are consistent with achieving the adopted strategy for reduced reliance on the automobile, including policies that provide for the following:
 (i) An assessment of whether improvements would result in development or travel that is inconsistent with what is expected in the plan;
 (ii) Consideration of alternative measures to meet transportation needs;
(iii) Adoption of measures to limit possible unintended effects on travel and land use patterns including access management, limitations on subsequent plan amendments, phasing of improvements, etc.

(For purposes of this section a “major roadway expansion” includes new arterial roads or streets and highways, the addition of travel lanes, and construction of interchanges to a limited access highway); and

(E) Plan and ordinance provisions that meet all other applicable requirements of this division.

Much of elements (B), (C), and (D) are addressed by components of the RTP. Other elements either are or will be addressed in subsequent implementation of the nodal development strategy.

The original schedule for implementation of nodal development incorporating LCDC’s recommendations is outlined below. This schedule assumed funding available to carry out the tasks listed.

Table 6
Nodal Development Implementation and Integrated Land Use Transportation Plan Development Schedule

<table>
<thead>
<tr>
<th>Task</th>
<th>Agency Responsible</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Specify specific areas for nodal development within one year</td>
<td>Eugene, Springfield</td>
<td>May 2002</td>
</tr>
<tr>
<td>2. Adopt Metro Plan designations and zoning amendments for the selected sites within two years after adoption of the RTP</td>
<td>Eugene, Springfield</td>
<td>September 2003</td>
</tr>
<tr>
<td>3. Review plan amendments and zone changes outside nodes to assure that they are consistent with the nodal development strategy</td>
<td>Eugene, Springfield, Lane County</td>
<td>As plan amendments and concurrent zone changes are submitted</td>
</tr>
<tr>
<td>4. Changes to land use plan designations, densities, and design standards listed in TPR Section 0035(2)(a)-(d). (If needed, in addition to work done through 2. Above)</td>
<td>Eugene, Springfield</td>
<td>September 2004</td>
</tr>
<tr>
<td>5. Policies to review and manage major roadway improvements to ensure that their effects are consistent with achieving the adopted strategy for reduced reliance on the automobile</td>
<td>Eugene, Springfield, Lane County</td>
<td>September 2004</td>
</tr>
<tr>
<td>6. Plan and ordinance provisions that meet all other applicable requirements of this division</td>
<td>Eugene, Springfield, Lane County</td>
<td>September 2004</td>
</tr>
</tbody>
</table>
Transportation Demand Management Planning and Program Actions

TDM actions encourage the use of travel options other than single-occupant vehicles to achieve reductions in VMT and reduce reliance on the automobile.

Overview of Existing TDM Programs

TDM programs are implemented at various levels by local agencies. Ongoing TDM planning efforts include coordination by local jurisdiction staff subcommittee of the TPC, the TDM Advisory Committee. The committee’s purpose includes regional TDM project development; monitoring the performance and providing guidance of the regional TDM program; and educating local agency staff on current TDM programs in the region, state, and nationwide. In addition, LCOG provides technical analysis of the impacts of various TDM actions as part of the planning process.

LTD initially formalized a TDM program in Fall 1994, when it started a new program called Commuter Solutions. Since that time, the Commuter Solutions program has grown to a regional program in scope extending beyond the LTD service boundary, and has changed its name to point2point Solutions. point2point Solutions offers the region’s businesses, organizations, and educational institutions a comprehensive set of travel options programs and services for their employees, staff, and students. TDM strategies incorporated in the point2point Solutions program include discounted group bus pass programs, parking management, a regional emergency ride home program, transit vouchers, ridesharing and vanpools, Park-and-Ride facilities, bicycling, walking, teleworking, and creative work scheduling. point2point Solutions coordinates and implements these primary regional TDM programs, services, and projects. point2point Solutions reports the progress and results of its work and effect on the region’s travel to the TDM Advisory Committee. Regional TDM programs and services are described below.

point2point Solutions Travel Options Programs and Services

Regional Outreach

The primary mission of the point2point Solutions program is to offer the region viable travel options to single-occupancy vehicle travel. Its main audiences include employers, educational institutions, and organizations. Outreach methods include direct mail, business referrals, newsletter and media coverage, leads from local planning staff, public service campaigns, tax benefits and credits information, individualized marketing strategies, advertising, presentations, and telephone contact. The benefits, both to the individual and the business/organization, are magnified in the results the community receives from successful travel options programs. In addition, community wide use of travel options programs prolong the public investment in the region’s roadway infrastructure. For example, point2point Solutions provides congestion mitigation strategies before, during, and after major regional transportation infrastructure construction projects.
Rideshare Services
When the point2point Solutions program was created at LTD in 1994, funding was made available to install and operate a new carpool matching software program. In 2003, point2point Solutions made a significant infrastructure investment and updated the rideshare services with RidePro3 software. With an on-line application, the software provides individual and group rideshare matching services. In addition, it has the capability to produce a comprehensive regional summary of emissions and VMT reduction as a result of ridesharing. Still in its infancy, Ridepro3 now has over 300 registrants.

Vanpool Matching Services and Support
point2point Solutions provides assistance for any group of individual or employers wishing to form a vanpool. Vanpool participants are matched through the RidePro3 software with assistance and guidelines to help get the vanpool operational. Vanpools are cost effective to operate if the daily work commute is more than 20 miles and six or more individuals join the vanpool. In addition, point2point Solutions assists in the coordination of the Valley VanPool service between Salem to Eugene and all major jurisdictions in between. Currently, Valley VanPool has over 100 participants.

Regional Emergency Ride Home Program
point2point Solutions offers a regional Emergency Ride Home (ERH) program that offers free transportation in case of a family emergency or sudden illness for employees who use alternative modes of transportation for their work commute. Research has shown that the desire to have a vehicle at work in case of a family emergency is the main reason workers continue to drive alone. A taxi voucher is supplied to designated staff, and the voucher is signed for the employee needing the taxi ride. The taxi company then completes and signs the voucher, keeping a copy, and point2point Solutions for the taxi ride. Employers participating in an ERH program are provided with four (4) emergency taxi rides per person, per year; however, actual usage has been minimal. Instead of using a taxi, some employers either provide a vehicle for the employee or allow a coworker to take the employee to his or her destination. For the employee who is considering riding the bus, carpooling, vanpooling, biking, or walking, the ERH program provides an answer to the question of, “what if?”

School Trip Management
In 2003, point2point Solutions began an intensive school transportation management program, Smart Ways to School. The Oregon Department of Energy provided seed money to research the effectiveness of travel option programs aimed at reducing the energy consumption associated with the school commute. Currently in the research phase, the pilot Smart Ways to School program works with the region’s three largest school districts, Eugene 4J, Springfield, and Bethel. At present, participation includes approximately 11,000 students representing elementary, middle and high school populations. Interventions included promotion of escorted walking and cycling school groups, carpool matching service (SchoolPool), and a trial regional youth bus pass program aimed at high school students. Future direction of the program will include involvement of the region’s traffic engineering for improved school pedestrian access and the health community to promote benefits of exercise for youth.
Marketing
Marketing the services provided by the point2point Solutions program is critical to the success of the program. The region’s trip attractors and generators (e.g., the U of O, PeaceHealth, Gateway area) need to be informed of the services provided by point2point Solutions and of the benefits received by participating; personally, locally, and globally. Marketing efforts include workshops, conferences, direct mail, telephone contact, news releases, newsletter articles, site visits, paid print advertising, group presentations, referrals, and public service announcements (television, radio, and print). Internal research, marketing, and incentive programs are conducted at participating work sites.

Creative Work Weeks
point2point Solutions staff assists and helps educate employers and employees on creative work schedules that can result in reduced peak-hour travel demand. Creative work schedules are an effective congestion management strategy. Elements in the program include staggered work hours, compressed work weeks, and flextime. Encouraging an employer to consider on-site daycare, food services, and shopping services also is promoted by point2point Solutions program.

Teleworking
Teleworking is using telephones, computers, and other equipment to work at home, usually one to three days a week. point2point Solutions offers information and referral services to businesses and individuals inquiring about telecommuting. Business and individual tax credit information also is available.

Coordination with Transit
Group Pass Program
point2point Solutions program advertises LTD’s Group Bus Pass program that offers employers with at least 10 employees a discounted bus pass program called the Group Pass Program. Group Pass Program participants sign an annual contract with LTD, and photo identification for each employee is required. Transportation education fairs and employee surveys are conducted annually at each work site to maintain visibility and encourage increased participation in alternative modes programs. The total number of local area employees with group pass benefits is approximately 41,000.

Commuter Club Program
point2point Solutions offers a transit voucher program called the Commuter Club. Businesses request transit vouchers from LTD to distribute to their employees who purchase monthly LTD bus passes. The employee pays up to 50 percent of the cost of the bus pass, and the employer is invoiced for the remaining amount. With the new federal transportation fringe benefit tax law, costs for the purchase of transit passes or vouchers (up to a maximum of $60 per employee per month) are a business expense, and the employee benefit is tax-free. LTD’s monthly adult bus passes are only $35 (prices effective September 2004); therefore, an employer can purchase bus passes for employees and not reach the maximum allowable expenditure under federal law.
Bicycle Commuting Programs

Programs and assistance are available to employers on how to facilitate the needs of bicycle commuters as well as how to promote and encourage bicycling as an alternative to the solo auto commute. point2point Solutions works closely with the City of Eugene's Bicycle Coordinator and with the City of Springfield's transportation planning staff to encourage safe bicycle access and secure bicycle parking facilities. In addition, coordination with state bicycle safety groups, such as the Bicycle Transportation Alliance, with the Smart Ways to School program assists in promotion of youth bicycling.

Bicycles on Buses Program

LTD added bicycle racks to all LTD buses in June 1996. Bicycle racks on transit buses encourage bicycle use in our community by meeting the needs of bicycle riders. Increased bicycle use reduces the number of VMT in the area, is one of the cleanest and healthiest ways to get around, and is rapidly becoming a way to get to work. LTD currently transports 20,464 bicycles monthly.

Bicycle Lockers Available

LTD has prototype bicycle lockers available at the Amazon Station. Bicycle riders need to supply their own locks. Analysis will determine additional placement of lockers at other locations. The current lockers are well used by bicyclists using transit.

Parking

Parking Management

Parking Management and Transportation Management staff from the cities of Eugene and Springfield and point2point Solutions works closely on transportation management strategies to encourage the use of alternative modes of transportation in our metropolitan area point2point Solutions works with local agencies to ensure that adequate carpool spaces are available in new and upgraded parking lots and reviews development plans for transit access, bicycle and pedestrian access, and parking needs. The City of Eugene also provides preferential carpool spaces in its parking garages.

Park & Ride Program

LTD operates more than 25 Park & Ride locations throughout the area. Park & Ride lots are conveniently located along 44 minor and major bus routes, and many locations are served by express or direct bus service, limiting the travel time to destinations. Park & Ride lots also are popular meeting places for carpools and vanpools.

TDM Implementation Process

Funding for the point2point Solutions program described above is primarily provided through two funding processes, the STIP and local MPO STP allocation with local match is provided by the jurisdictions of LTD, cities of Eugene and Springfield, Lane County, and LCOG. It is important to note that any rideshare activity does not require any local match. point2point
Solutions has STIP dollars programmed until 2013. point2point Solutions currently receives an annual allocation of $300,000 in STP dollars through the local MPO STP allocation process.

TDM Planning and Program Actions

The success of TDM efforts is dependent upon the availability and quality of alternative mode infrastructure. Thus, TDM Planning and Program Actions should be closely coordinated with the transit and bicycle/pedestrian Capital Investment Actions.

1. **TDM Programs and Services**
 1.1. Require large employers (25 or more).
 1.2. Require state and local government agencies to implement TDM programs for their employees.
 1.3. Require employers of a certain size (25 or more) to develop TDM programs for employees.
 1.4. Require that large special events in the community, such as the Lane County Fair, sporting events, and concerts, provide transit shuttle service.
 1.5. Reduce required number of employees necessary for a group bus pass program to expand program.
 1.6. Evaluate potential impact of telecommunication technology applications to minimize future travel demand on the region’s infrastructure. Refine regional transportation modeling and forecasting appropriately.
 1.7. Evaluate various transportation system pricing strategies, appropriate applications, potential revenue-enhancing capabilities, institutional and legislative changes necessary for implementation, and public support programs. Transportation pricing measures can be applied to highly congested bridges and corridors where warranted by economic feasibility and to partially support financing of future infrastructure and transportation services.
 1.8. Establish Transportation Management Associations (TMA’s) in nodal developments, along BRT corridors, and highly congested areas. TMA’s are voluntary or mandatory organizations of developers and/or employers in a particular subarea or impact zone, working together to solve transportation problems. TMA’s would interact with public agencies and point2point Solutions to develop viable travel option programs. point2point Solutions would promote and provide travel options strategies in that area.
 1.9. Develop regional policies in partnership with public school districts, private educational institutions, and youth recreational programs to reduce VMT’s associated with school commute or after-school activities.
 1.10. Implement traffic calming measures on roads to encourage the use of alternative modes.
 1.11. Implement dialog marketing (e.g., TravelSmart) throughout region’s appropriate neighborhood.
 1.12. Build ridesharing program within region and target commuters outside the MPO with vanpooling.
2. Educational and Awareness

2.1. Develop a multimodal *Share the Road* public awareness campaign to foster increased courtesy and respect among all modes. Program elements could include public service announcements and installation of *Share the Road* signs at key locations.

2.2. Implement a public awareness campaign to alert people that they must yield to buses re-entering traffic.

2.3. Provide multi-modal information at LTD stations, Amtrak, and large regional trip generators and attractors.

2.4. Reinforce public understanding of the law concerning pedestrian rights-of-way, transit yield law, and school zone speed laws.

2.5. Promote enforcement of traffic laws that prohibit unlicensed and uninsured motorists from driving to increase safety and use of alternative modes.

2.6. Promote school trip management through education and monthly pass programs. point2point Solution’s ‘Smart Ways to School’ program developed a pilot regional youth bus pass program with assistance from LTD. LTD has a current reduced youth bus pass rate.

2.7. Promote car sharing. Car sharing is joint access to a fleet of vehicles located close to neighborhoods and businesses. Members pay for the hours and miles they drive. This provides a strong financial incentive to use alternative modes for most trips while having access to a vehicle when needed. Portland and Seattle have car sharing programs established.

2.8. Develop a comprehensive congestion mitigation program to assist public agencies and the public to reduce congestion during large infrastructure projects.

3. Incentives

3.1. Collaborate with bicycle shops to sponsor bicycle maintenance clinics, training rides, and other events and to offer discounts on bicycling gear to employees who commute by bicycle.

3.2. Provide incentives to employers who implement TDM programs for their employees. (Based on *TransPlan* 1986, Policy AM3, Policy PK5.)

3.3. Provide incentives, such as SDC credits or reductions in minimum auto parking requirements, to developers who construct bicycle support facilities such as lockers, changing rooms, shower facilities, and sheltered parking, beyond ordinance requirements.

4. Parking Management: For actions related to parking management, see Chapter 3, page 96.
Transportation System Improvements Planning and Program Actions

The TSI Planning and Program Actions are presented in the following categories:

1. System-Wide
2. Roadways
3. Transit
4. Bicycles
5. Pedestrian
6. Goods Movement
7. Other Modes

TSI System-Wide
This section provides Planning and Program Actions related to the transportation system as a whole.

1. Intermodal Linkages
 1.1. Evaluate the need for improved intermodal linkages.

2. System Efficiency
 2.1. Improve system efficiency without major additions in infrastructure through intersection modification, roadway modification, increased preservation efforts, restructuring area-wide transit service, and priority treatment for transit vehicles. (Based on TransPlan 1986 Policy TSM1.)

3. Right of Way
 3.1. Inventory, purchase, and improve private roads, rail rights-of-way, and easements of regional significance for public use and benefit. (Based on Oregon Transportation Plan (OTP) Action 1B.4.)
 3.2. Obtain right-of-way or building setbacks to provide for future capacity in transportation corridors. (TransPlan 1986 Policy LU3.)

4. Standards
 4.1. Establish standards for minimum levels of service and system design for passengers and freight for all modes. (Based on OTP Action 1C.1.)

5. Environmental
 5.1. Regulate truck freight in sensitive environmental areas, such as Springfield’s drinking water protection zones. (Springfield staff)
 5.2. Retrofit existing transportation facilities to reduce environmental or social impacts (e.g., polluting runoff, noise).
6. **Intelligent Transportation Systems**

6.1. Research, test, and implement as appropriate Intelligent Transportation Systems technology, including: arterial traffic signal and freeway-arterial interconnection programs, high-occupancy vehicles and transit enhancements, en-route trip guidance programs, automated support for TDM programs, and traffic incident response systems.

TSI Roadways

This section provides Planning and Program Actions related to the regional roadway system.

1. **Access Management**

Access Management techniques can offer significant operational and safety benefits for arterial roadways. Access management has the potential to decrease accidents and to preserve mobility without large system expansions.

1.1. Develop access management plans for key transportation facilities.

1.2. Implement access management (access control) techniques, for example, driveway and public road spacing, median control, and signal spacing standards, that are consistent with the functional classification of roads and consistent with limiting development on rural lands to rural uses and densities. (Supported by TransPlan 1986 Policy LU1; TPR 660-12-045(2))

2. **Neighborhood Traffic Calming**

2.1. Develop neighborhood traffic-calming plans.

2.2. Implement traffic-calming techniques, such as restricted turn movements, traffic diverters, bulb-outs (landscaped or narrowed entrances), traffic circles or roundabouts, woonerfs, narrowed streets, truck restricted areas, and vehicle weight limitations. (Based on TransPlan 1986 Policy LU5.)

3. **Design Considerations for all Modes**

3.1. Provide sidewalks on urban streets, including arterials, collectors, and local streets, and bridges. Sidewalk separation from the curb should be provided on arterial streets and major collectors. (TransPlan 1986 Policy I8; TPR 660-12-045 (3)(b)(B))

3.2. Assign a higher priority to road projects that have a bicycle component.

3.3. Limit or eliminate on-street auto parking when necessary for the safe and convenient movement of bicycles.

3.4. Provide bicycle safety devices such as bicycle-proof drain grates, rubberized pads at railroad crossings, and appropriate signage in conjunction with reconstruction or new construction of the street system and in other areas as needed. (Based on TransPlan 1986 Policy AM4.)

3.5. Evaluate the need to improve roadway access for fire/emergency medical services and transit vehicles in low-density areas, such as the Eugene South Hills. (South Hills Refinement Planning Committee Report, July 1997.)

3.6. Evaluate the potential for construction of roundabouts at intersections.
TSI Transit

This section provides Planning and Program Actions related to transit service and facilities.

1. **Transit Service Improvements**
 1.1. Provide service every ten minutes along major corridors. (TransPlan 1986, Policy AM1.)
 1.2. Implement a shuttle that connects the downtown Eugene area with other major activity centers.
 1.3. Conduct feasibility studies on expanding transit service operations to nearby communities.
 1.4. Implement operating procedures and monitor design guidelines to minimize security and safety concerns at transit stops/stations and on vehicles.
 1.5. Acquire low-floor buses to improve and speed access by riders.
 1.6. Acquire smaller buses to serve neighborhoods on local streets and connect the neighborhood service with the corridor service at nearby land use nodes.
 1.7. Establish a prepaid fare system along the BRT corridors to speed rider boarding.

2. **Transit Facility Improvements**
 2.1. Construct transit stations in newly developed areas in the Eugene-Springfield area and in nearby communities. (Based on Metro Plan 1987 Transportation Policy 3.)
 2.2. Implement a transit signal priority system along major transit corridors. (Based on TransPlan 1986 Policy TSM3, AM2.)
 2.3. Support transit use through provision of bus stops, pullouts and shelters, optimum road geometrics, on-road parking restrictions, and similar facilities, as appropriate. (TPR 660-12-045(4)(a))
 2.4. Implement transit-priority techniques, such as exclusive bus lanes, restricted turn movements at appropriate intersections for all vehicles except buses, queue-jumpers, and separate access ramps, along major transit corridors. (Based on TransPlan 1986 Policy TSM3, AM2.) Give priority to transit/carpools during the peak hour at appropriate ramps to limited access facilities. (TransPlan 1986 Policy TSM3, AM2.)
 2.5. Provide transit facility improvements, such as shelters, benches, lighting, and transit schedule information, at major bus stops.
 2.6. Provide transit schedule information at all transit shelters.

3. **Park-and-Ride Facilities**
 3.1. Provide multiple Park-and-Ride facilities along major corridors and BRT corridors.
 3.2. Establish Park-and-Ride facilities in nearby communities for commuters into the metro area. (TransPlan 1986, Policy IC2.)
 3.3. Develop Park-and-Ride facilities that make use of existing public and private parking lots, where use by Park-and-Ride commuters complements existing parking use (e.g., churches or retail establishments with evening or weekend peak demand) (TransPlan 1986 Policy AM5.)
 3.4. Consider establishment of a Park-and-Ride facility at Autzen Stadium with a direct link to the University/Sacred Heart/Riverfront Research Park area.
Bus Rapid Transit Implementation Process

BRT is, in essence, using a bus system to emulate the positive characteristics of a light rail system. BRT can be implemented at a fraction of the cost of light rail, and can be implemented incrementally. In addition, BRT can lay the foundation for a future light rail system. The BRT system travel times are expected to be competitive with single-occupant vehicle travel times.

The BRT concept consists of high-frequency, fast transit service along major transportation corridors, with small bus service in neighborhoods that connects with the BRT corridor service and with nearby activity centers. The following are potential elements of a BRT system:

1. Exclusive bus lanes,
2. A bus guideway system,
3. Traffic signal priority for transit,
4. Low-floor buses for faster boarding,
5. Pre-paid fares for faster boarding,
6. Greater spacing between bus stops,
7. Improved stops and stations (shelters, lighting, information, etc.), and
8. Park-and-Ride lots along BRT corridors.

It should be noted that some of these elements, such as low-floor buses, signal priority, and Park-and-Ride system expansion, while part of a BRT system, would also be part of improvements that could be made to the existing LTD system, even if BRT were not pursued.

Specific determination of which of the BRT elements are used and where they are used will require a significant amount of research and analysis. The research will include consideration of impacts on transit ridership, traffic flow, cost, the environment, and land uses. Also to be investigated are funding sources to pay for the improvements.

The BRT system would be implemented on a corridor-by-corridor basis. The first corridor was an east/west line between Springfield and Eugene along Main Street, Franklin Boulevard, and West 11th. This corridor was selected based on an analysis of several factors, including transit ridership, car and bus travel times, population, employment, and coordination with planned nodal development. The second corridor extended that line from the Springfield Transit Station to the Gateway area, serving several regional facilities including the regional hospital at RiverBend and the Gateway Mall.

The research and analysis process for determining future BRT corridors will include community involvement, with an emphasis on encouraging participation by those who work, live, or travel along the pilot corridor. There will also be extensive participation by technical staff from appropriate jurisdictions. The BRT improvements will not be implemented without the approval of both the LTD Board of Directors and the policy board with jurisdiction over the road under consideration.
TSI Bicycles

This section provides Planning and Program Actions related to the regional bicycle system and support facilities.

1. **Bicycle System Improvements**
 1.1. Acquire land at market value, or secure dedications of land or access easements for bikeways in connection with utility rights-of-way, drainage ditches, rivers, rail lines, and other corridors. (Based on *TransPlan* 1986 Policy LU9.)
 1.2. Retrofit local streets that are designated bicycle routes with bicycle-friendly traffic-calming devices such as traffic circles, curb extensions, and diverters that allow through movements for bicyclists.
 1.3. Improve safety and convenience of bicycle-pedestrian crossings at major streets.

2. **Bicycle System Support Facilities**
 2.1. Improve lighting and signage on off-street, multi-use paths and install adequate lighting and signage at street or bike path intersections or other segments of the bicycle system where significant numbers of bike-bike, bike-pedestrian, or bike-motor vehicle conflicts occur.
 2.2. Provide bicycle parking facilities at all new multi-family residential developments of four or more units; new retail, office, and institutional developments; public facilities; regional activity centers; public events; and all transit transfer stations and Park-and-Ride lots. (*TransPlan* 1986 Policy PK4; TPR 660-12-045(3)(a))
 2.3. Modify development regulations for new construction and major renovation projects to mandate the provision of showers and bicycle storage facilities in public buildings with at least 50 employees.
 2.4. Design and place a series of *you are here* bicycle system maps at major destinations and other strategic locations along the bicycle system.
 2.5. Place bicycle route signage along designated routes in the metro area.

3. **Bicycle Safety**
 3.1. Work with the state Legislature to add a non-motorized portion to the State Motor Vehicle test that includes questions on appropriate behavior of motorized vehicles towards bicyclists and pedestrians.
 3.2. Work with public school districts to educate students about improving bicycle skills, increasing the observance of traffic laws and enhancing safety. Specific techniques include bicycle safety rodeos and transportation safety assemblies designed to teach safe riding habits and rules of the road to young cyclists.
 3.3. Establish and publicize a *Close Call* hot line to better identify high hazard locations and to pinpoint violations that lead to accidents.
 3.4. Work with local higher education institutions (e.g., University of Oregon, Lane Community College) to provide materials and instruction on bicycle safety to incoming students.
 3.5. Collaborate with LTD to develop a training session, including a video, for LTD drivers. The focus of the training would be on sharing the road with cyclists.
3.6. Produce a video to educate bicyclists that commit traffic violations. The focus of the video would be on cyclists’ rights and responsibilities.

3.7. Advise local school districts on ways to include bicycle education and awareness in driver education classes and testing and advise private driver training businesses on ways to include bicycle education and awareness in courses.

3.8. Adopt maintenance procedures for the bikeway system to ensure good pavement condition; visible striping and signage marking the route; and safe lanes unobstructed by leaves, gravel, and debris.

4. Bicycle Planning

4.1. Develop a process for assessing all planned and proposed bicycle projects to better determine their scope, feasibility, and cost.

4.2. Develop a bicycle transportation forecasting model.

4.3. Establish a comprehensive data collection system to: develop and regularly update a database of bicycle safety and use data; monitor bicycle and pedestrian accidents and injuries with local jurisdictions and health care facilities; conduct annual or seasonal bicycle counts along selected bikeways; and monitor pavement condition of bike lanes and paths.

4.4. Conduct a bicycle parking study that inventories existing structures and identifies the types and desired locations of additional structures.

TSI Pedestrian

This section provides Planning and Program Actions related to the pedestrian system and support facilities. The pedestrian actions will be implemented in large part through TSP land use actions and local jurisdiction design standards that support pedestrian-oriented design. Pedestrian actions will also be implemented through construction and reconstruction of roadways and small improvement projects.

1. Pedestrian System Improvements

1.1. Establish priorities for expenditure on routine, ongoing repair, and reconstruction of existing sidewalks and construction of new sidewalks. (Based on TransPlan 1986 Policy I5.)

1.2. Develop a plan for prioritized construction of sidewalk segments to fill gaps in the existing system of urban area roadways. (Based on TransPlan 1986 Policy I5.) Develop a plan for prioritized retrofitting of all corner sidewalks with curb ramps. (Based on TransPlan 1986 Policy AM4.)

1.3. Install audio/tactile pedestrian signal systems in areas with large elderly and disabled populations. Provide pedestrian push buttons (with visual wait signal) at intersections. (Based on TransPlan 1986 Policy AM4.)

1.4. Evaluate the need for new or improved treatments of pedestrian street crossings, such as small curb radii, taking into account the type of pedestrian facility, pedestrian volume, vehicle traffic, crossing distance, sight distance, accident data, and related factors.
1.5. Identify pedestrian use paths, determine which ones provide needed connectivity, and ensure their continued viability (e.g., north end of Friendly Street through the Lane County Fairgrounds to 13th Avenue and Monroe).

1.6. Require that on-site pedestrian systems connect with adjoining properties and the external pedestrian system. (TPR 660-12-045(4)(b)(B))

1.7. Require developers to provide adequate internal pedestrian circulation facilities within new subdivisions, multi-family developments, planned developments, shopping centers, and commercial districts. This can be accomplished through clustering buildings, constructing paved accessways and walkways and other techniques. (Reference TPR 660-12-045 (3)(b,e))

1.8. Provide paved pedestrian walkways between new commercial and residential developments and neighborhood activity centers (e.g., schools, parks, shopping areas, transit stops, and employment centers) and adjacent residential areas and transit stops and neighborhood activity centers within one-half mile of the development. Specific measures include constructing walkways between cul-de-sacs and adjacent roads, providing walkways between buildings, and providing direct access between adjacent uses. (Based on TransPlan 1986 Policy LU6; TPR 660-12-045 (3)(b,c,d,e))

1.9. Provide convenient pedestrian access to transit at new retail, office, and institutional buildings at or near major transit stops. This shall be accomplished by providing walkways between building entrances and streets adjoining the site and providing pedestrian connections from the on-site circulation system to adjoining properties. (TPR 660-12-045(4)(b))

1.10. Retrofit existing streets to be safer and friendlier for pedestrians (e.g., curb extensions, center refuge medians).

2. Pedestrian System Support Facilities

2.1. Require landscaped areas (planting strips) along sidewalks.

2.2. Require street furniture, such as benches.

2.3. Require lighting.

TSI Goods Movement

This section provides Planning and Program Actions related to goods movement. The Goods Movement and Intermodal Facilities Map in Appendix A shows the locations of bus and passenger rail service terminals, public use airports, mainline and branchline railroads and railroad facilities, and major regional pipelines and terminals. There are no port facilities in the Eugene-Springfield metropolitan area.

ODOT has the responsibility for developing the intermodal management system in the Eugene-Springfield area as part of the SAFETEA-LU planning guidelines. ODOT is focusing its efforts on the links between various modes of freight transportation. Examples of intermodal links are roadways between freight intermodal facilities and the National Highway System facilities. The metropolitan planning process should continue to support ODOT’s planning and implementation actions.
1. **Goods Movement Planning**

1.1. Establish a freight task force (or freight planning committee) with members drawn from the freight-transport industry, local businesses, and other interested parties. Members should include senior public and private sector officials with decision-making authority.

1.2. Conduct a regional freight study to develop a thorough understanding of regional goods movement issues, needed data, travel patterns, and existing and future needs. The logistics requirements of major regional companies should be analyzed to identify the types of transportation on which they are most dependent, and to assess both deficiencies and opportunities. Freight mobility performance measures that are attentive to daily system reliability and the logistics needs of manufacturers and businesses should be developed.

1.3. Develop a database on freight movement and enhance the region’s freight-travel modeling capability.

1.4. Study the feasibility of establishing a port authority to coordinate rail/truck intermodal goods movement.

1.5. Support actions that encourage goods movement by rail.

1.6. Encourage public and private partnerships to improve freight mobility.

2. **Goods Movement System Improvements**

2.1. Correct existing safety deficiencies on the freight network related to: roadway geometry and traffic controls; at-grade railroad crossings; truck traffic in neighborhoods; congestion on interchanges and hill climbs; and hazardous materials movement.

2.2. Identify priority freight projects. Review CIPs, including TIP, to ensure that the priority projects are included. Coordinate the scheduling of projects in the TIP and various capital budgets with related private projects.

TSI Other Modes

This section provides Planning and Program Actions related to other modes, including air, rail, and inter-city bus service.

1. **Airport**

1.1. Develop plans to ensure that future air transportation capacity needs are met.

2. **Rail System Improvements**

2.1. Purchase the Amtrak station site in downtown Eugene to preserve as the future high-speed rail terminal.

2.2. Plan for future high-speed rail train servicing facilities.

3. **Inter-City Bus Service**

3.1. Support private sector efforts to improve inter-city bus terminals and service.
Part Six: Parking Management Plan

This plan discusses Capital Investment Actions and presents Planning and Program Actions related to parking management that meet the parking requirements of the TPR, while maintaining a parking supply that supports the economic health of the community. Parking management needs to be looked at regionally, while providing jurisdictional flexibility.

Parking management strategies are an important part of an integrated set of implementation actions that support nodal development, system improvements, and demand management. A vast supply of free and subsidized parking can encourage automobile use over transit use. A limited, rather than abundant supply of parking can encourage use of non-auto modes, especially transit. There is also a direct relationship between the price of parking and the use of public transit.

Parking management strategies address both the supply and demand for vehicle parking. They contribute to balancing travel demand with the region among the various modes of transportation available. Parking management strategies are effective in increasing the use of alternative modes, especially when combined with other TDM strategies. Supportive TDM programs include carpool/vanpool programs, preferential parking and reserved spaces for carpooling, and parking pricing.

TPR Requirements for Parking Space Reduction

The TPR requires a parking plan that achieves a 10 percent reduction in the number of parking spaces per capita in the metropolitan area over the 20-year planning period. For the Eugene-Springfield region, the TPR reduction goal is .514. If the level of parking density (spaces per developed acre) remains constant and land development and population forecasts are accurate, then the level of parking spaces per capita will be reduced by more than the 10 percent reduction required by the TPR.

<table>
<thead>
<tr>
<th>Zone/Plan Designation</th>
<th>1995 Total Spaces</th>
<th>1995 Spaces Per Capita</th>
<th>2015 Total Spaces</th>
<th>2015 Spaces Per Capita</th>
<th>2015 TPR Goal Total Spaces</th>
<th>2015 TPR Goal Spaces Per Capita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>51,259</td>
<td>.229</td>
<td>57,865</td>
<td>.194</td>
<td>61,618</td>
<td>.207</td>
</tr>
<tr>
<td>Industrial</td>
<td>27,622</td>
<td>.124</td>
<td>30,200</td>
<td>.101</td>
<td>33,205</td>
<td>.111</td>
</tr>
<tr>
<td>Institutional</td>
<td>48,692</td>
<td>.218</td>
<td>49,067</td>
<td>.165</td>
<td>58,534</td>
<td>.196</td>
</tr>
<tr>
<td>Total</td>
<td>127,573</td>
<td>.571</td>
<td>137,132</td>
<td>.460</td>
<td>153,357</td>
<td>.514</td>
</tr>
</tbody>
</table>

Capital Investment Actions

Capital Investment Actions that support non-auto modes have an indirect impact on parking needs by lowering the demand for spaces in higher density areas. For example, Park-and-Ride facilities can contribute to lowering the demand for parking in downtown areas. Transit Capital Investment Actions call for the establishment of Park-and-Ride facilities throughout the Eugene-Springfield area.
Planning and Program Actions
RTP policy supports increased use of motor vehicle parking management strategies in selected areas throughout the Eugene-Springfield metropolitan area.

TDM Policy #2: Parking Management
Increase the use of motor vehicle parking management strategies in selected areas throughout the Eugene-Springfield metropolitan area.

The City of Eugene established policy that made specific recommendations regarding parking reduction with the Eugene city limits through the adoption of the CATS and the Transportation rule Implementation Project (TRIP). CATS recommended a range of parking policies and TRIP refined and implemented several of these strategies.

1. **Supply Strategies**
 1.1. Establish maximum allotments for parking. (TPR 660-12-045(5)(c))
 1.2. Increase the use of Park-and-Ride lots to reduce parking demand in the city centers and other intensely developed areas.
 1.3. Allow parking exemptions.
 1.4. Lower or eliminate minimum parking requirements. (**TransPlan** 1986 Policy PK3; TPR 660-12-045(5)(c))
 1.5. Encourage construction of parking structures rather than surface parking.
 1.6. Expand the number of carpool/vanpool parking spaces in City-owned lots and provide financial incentives to use those spaces.

2. **Demand Strategies**
 2.1. Provide incentives, such as employer payroll tax reductions and automobile parking requirement reductions, to employers who implement preferential parking for carpools and vanpools in new developments with designated employee parking areas.
 2.2. Shift free parking areas to paid parking where appropriate.
 2.3. Encourage employers to charge fair market prices for employee parking. (**TransPlan** 1986 Policy PK6.)
 2.4. Provide preferential parking for carpools and vanpools in new developments with designated employee parking areas. (TPR 660-12-045(4)(d))
 2.5. Manage overflow parking impacts in residential areas through residential parking permit programs. (Based on **TransPlan** 1986 Policy PK7.)
 2.6. Encourage adherence to parking regulations by expanding enforcement programs and increasing parking fines. (**TransPlan** 1986 Policy PK9.)
 2.7. Establish shorter time limits on parking in high demand areas, such as on-street parking near employment centers. (**TransPlan** 1986 Policy PK8.)
Part Seven: Intelligent Transportation System Operations and Implementation Plan

In early 2003, ODOT commissioned the development of the Regional Intelligent Transportation System (ITS) Operations & Implementation Plan for the Eugene-Springfield Metropolitan Area. The final plan was presented to MPC in November 2003 and represents a collective effort by the Oregon Department of Transportation (ODOT), Lane County, the City of Eugene, the City of Springfield, the Lane Council of Governments (LCOG), and the Lane Transit District (LTD). This plan outlines the deployment of ITS projects, which include advanced technologies and management techniques, to improve the safety and efficiency of the transportation system over the long term. It is also consistent with similar efforts in other regions and statewide to ensure the ITS strategies utilized are integrated and complementary. The Executive Summary of the Final Report is provided in Appendix G.

Overview of Intelligent Transportation Systems

Intelligent Transportation Systems (ITS) involve the application of advanced technologies and proven management techniques to solve transportation problems, enhance safety, provide services to travelers, and assist transportation system operators in implementing suitable traffic management strategies. ITS focuses on increasing the efficiency of existing transportation infrastructure, which enhances the overall system performance and reduces the need to add capacity (e.g., travel lanes). Efficiency is achieved by providing services and information to travelers so they can (and will) make better travel decisions and to transportation system operators so they can better manage the system.

ITS applications provide a viable opportunity for improving the safety and efficiency of the surface transportation system in the Eugene-Springfield metropolitan area. These applications help improve transportation system operations by performing a function more quickly or reliably or by providing a service that was not previously available. In effect, ITS improves the mobility of people and goods on the existing roadways and also provides the potential for substantial savings on future construction, particularly of highways. It is often easy to overlook the importance of investing in operations, but it is necessary to ensure that the traveling public makes safe and efficient use of existing roadways.

ITS Projects

The ITS Operations and Implementation Plan identified several potential ITS projects. Table 5 in Appendix G summarizes the details for each of the proposed ITS projects. Figure 1 in Appendix G provides the location of proposed projects. These projects would be implemented primarily as part of existing projects or as funding becomes available.

The following information is provided for each project:

- Project Number (for reference)
- Project Title
- Project Description
Priority (High, Medium, or Low)
Relativity to Planned Projects
Project Dependencies
Capital Costs/O&M Costs
Expected Benefits
Technical and Institutional Feasibility

The project numbers are used for reference purposes only and do not indicate any type of priority. Within this table, the projects are described under one of the following six applicable categories:

- Travel & Traffic Management (TM)
- Communications (CO)
- Public Transportation Management (PTM)
- Emergency Management (EM)
- Information Management (IM)
- Maintenance & Construction Management (MC)

ITS Planning and Program Actions

To successfully implement the proposed ITS plan, the following steps are necessary:

* **ITS Program Continuation**
 The continuation of the ITS steering committee is possibly the most important item for the successful implementation of the ITS plan. This group should include the key stakeholders from the planning process and should be organized as a new subcommittee to the Transportation Planning Committee (TPC). This group will initiate the steps outlined in this plan, plan projects that fit agencies’ needs, pursue Federal funding opportunities, and monitor/report progress and effectiveness. In addition, a representative from this ITS subcommittee should report current status of the plan implementation at least annually at the Metropolitan Policy Committee (MPC).

* **Deploy “Early Winner” Projects**
 Another key to the success of ITS in Eugene-Springfield will depend on the deployment of “early winner” projects. A potential “early winner” project includes the deployment of field devices (closed circuit television cameras, count stations, variable message signs, and ramp meters) on Beltline Highway to support regional freeway management and traveler information. This project would also support the current Statewide implementation of the 511 traveler information telephone number by providing real-time information from these field devices.

* **Incorporate the ITS Plan in the RTP Update Process**
 The ITS Steering Committee plans to incorporate this ITS Plan in the upcoming Regional Transportation Plan (RTP) update process. The ITS devices and communications infrastructure identified in this plan should be installed on corridors concurrently with traditional transportation construction and maintenance projects. This approach will minimize reconstruction, save time and money, and result in the modernization of the regional transportation system.
applicable, relationships to currently planned regional projects have been identified in Table 5. In addition, the data collection, analysis, operational techniques and information sharing developed through the projects in this plan can become key elements of other regional efforts.

Do Not Overlook Future Needs if They Fit With Current Opportunities

The region should pursue a flexible approach to implementing the plan. Opportunities may become present in early years to implement elements of the plan identified for later deployment. These opportunities may be possible due to other funding sources, coordination with roadway construction, coordination with local agency/private initiatives and/or transit priorities. These opportunities should be seized when appropriate.

Define a Revenue Stream

The Central Lane MPO Area will need to define a revenue stream for construction, operations and maintenance. The ITS Operations and Implementation Plan provides the basis for the funding and identifies opportunities for regional coordination and cost-sharing. The region must dedicate funding sources to implement each increment of the 20-year plan. In addition to the traditional funding sources, other non-traditional sources for funding such as grants from non-profit agencies should be considered. The Central Lane MPO Area will need an on-going commitment to operations and maintenance of the equipment and software to maximize the benefits of the ITS program. The ITS elements proposed within this program require consistent staffing for effective system operation, as well as requiring trained staff to do routine maintenance.
CHAPTER FOUR

PLAN PERFORMANCE AND IMPLEMENTATION MONITORING
Chapter 4: Plan Performance and Implementation Monitoring

Table of Contents

Introduction... 1

Part One: Context for Assessment of Plan Performance ... 2

Part Two: Projected Plan Performance ... 4

Traffic Congestion Measures ... 6
Vehicle Miles Traveled and Trip Length Measures ... 7
Mode Choice Measures ... 7
Environmental Measures .. Error! Bookmark not defined.
Land Use Measures .. Error! Bookmark not defined.
Transportation System Measures .. Error! Bookmark not defined.
Summary Assessment ... 8

Part Three: Congestion Management System ... 9

Part Four: Plan Implementation Monitoring ... 15

Plan Monitoring Process ... 15

Introduction

This chapter describes how the RTP is projected to perform and sets forth a monitoring program to assess how the plan performs over time. The monitoring program ties plan goals, objectives, and policies presented in Chapter Two to the implementation of actions presented in Chapter Three. The program also aids in tracking the plan’s performance in meeting federal and state requirements.

Findings that result from analysis of these performance measures will allow for informed decisions to be made as to how best implement the plan. For example, priorities or emphasis for implementation actions may be adjusted, policies may be amended and additional policies or implementation actions may be recommended due to performance measure outcomes. Findings may also influence budgeting and the type and phasing of capital projects included in the region’s TIP.

At the time of this 2035 RTP update, the Coburg, Eugene, and Springfield Transportation System Plans (TSPs), and the Regional Transportation System Plan (RTSP) are all in the midst of updates. The local and regional TSPs are considering updates to their performance measures to address state requirements, as needed. At this time, federal and state requirements do not require the Regional Transportation Plan to include performance measures. In order to facilitate the local TSPs updates of their performance measures in accordance with state requirements, and the regional TSP then arriving at updated performance measures as needed, the 2035 federal RTP will maintain only a minimum set of performance measures. Following the completion of the
updates to the local and regional TSPs, the 2039 RTP update scheduled for adoption in 2015 will then consider adoption of a new set of regional performance measures.

The remainder of this chapter provides a context for the performance assessment, a presentation of the performance of the plan, and an overview of the proposed program for monitoring the impacts of plan implementation.

Part One: Context for Assessment of Plan Performance

Regional transportation planning has been carried out in the Eugene-Springfield area since the mid 1960s beginning with the Eugene-Springfield Area Transportation Study (ESATS) in 1967. T-2000 in 1978 and TransPlan in 1986 followed ESATS. Between the time ESATS was completed and the current update of the RTP, there has been an evolution in what is expected from a region’s transportation system and commensurately with the decision making for and content of the region’s transportation plan. This evolution has included the following shifts:

From: Emphasis on methods and data in support of programming transportation system improvements.
To: Improved information on a wide-ranging set of impacts for a wide variety of capital, operational, pricing, lifestyle, and land-use strategies.

From: A focus on the efficiency of highway networks and corresponding levels of service (speed and travel time).
To: Multimodal systems operation and broad performance measurement.

From: A focus on how to get from point A to point B.
To: A broader context of transportation's role in a community and in the global, national, state, and local economic market.

From: Acceptance of land use patterns as a given and not part of the solutions set.
To: Use of land use strategies in connection with corresponding transportation policies as a major strategy.

From: A focus on transportation system user benefits and costs.
To: Broader concern for the equitable distribution of benefits and costs within the community.

These changes have led to consideration of a more complex set of relationships, which makes it important to consider a wide range of performance measures. The monitoring program provides for assessment of multiple performance measures to address the comprehensive, sometimes conflicting goals, objectives, and policies and to facilitate a broad discussion of issues among diverse users.

Performance measures are the primary tools for quantitatively assessing the impacts and achievements of plan implementation and are key criteria by which progress towards the plan
goals can be assessed. The performance measures provide a framework within which data that are generated and collected can be presented in a meaningful way.

The performance measures are results-oriented, meaning they are focused on assessing the outcomes or effectiveness of transportation investments and other implementation actions. Results from the ongoing plan performance and implementation monitoring program will be compiled and presented to decision-makers as the plan is implemented.
Part Two: Projected Plan Performance

The main focus of reviewing the performance of the plan is to assess how the proposed investments and actions are either:

1) Improving existing conditions, or
2) Avoiding undesirable conditions that would be present without the planned investments and actions.

Table 8 shows data for existing conditions and projections for two future scenarios:

- **Existing Conditions 2010** shows system performance as of 2010.
- The future scenario, **2035 Financially Constrained RTP**, shows projected draft RTP performance for the year 2035 under conditions of financial constraint. This scenario assumes implementation of land use and TDM strategies. Transit, bicycle, and roadway capital actions are limited to financial resources expected to be available to the region as discussed in Chapter 3. Capital actions identified as illustrative in Chapter 3 are not included in this scenario.

For the 2035 Financially Constrained RTP scenario presented in Table 8, the amount for each performance measure is listed along with the percentage change in that performance measure from 2010 conditions.

In general, implementation of the 2035 Financially Constrained RTP is projected to serve the region’s future travel needs for people and goods, while turning the transportation system and the service it provides in a more desirable direction. The proposed plan reflects a set of tradeoffs among the communities’ goals and objectives. A comprehensive set of transportation system performance measures provides the framework for a meaningful discussion of those tradeoffs.

It should be noted that the performance measures generated for the RTP should not be compared to the measures presented in the 2001 TransPlan. The larger geographic area considered in the RTP has different travel behavior than the Eugene-Springfield area by itself. In particular, trip lengths in outlying areas are significantly higher, contributing to more VMT.

Nor should the performance measures in this RTP be compared directly with those in previous RTPs. Changes in modeling methodologies, geography, data quality, and other factors make any such direct comparison problematic at best. The Performance Measures shown in Table 8 allow only for the direct comparison of the measured 2010 figures and the modeled and projected 2035 figures.
Table 8
RTP 2010-2035 PERFORMANCE MEASURES

All statistics are pertinent to the Central Lane MPO Study area: the area defined by the Transportation Analysis Zones: an area including Eugene/Springfield/Coburg UGBs and a small area of surrounding County jurisdiction.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>2010</th>
<th>2035</th>
<th>% chg from 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td>Population<sup>1</sup></td>
<td>253,357</td>
<td>316,425</td>
<td>24.9%</td>
</tr>
<tr>
<td></td>
<td>Employment<sup>2</sup></td>
<td>116,561</td>
<td>163,290</td>
<td>40.1%</td>
</tr>
<tr>
<td>Congestion</td>
<td>PM1 Congested Miles of Travel (% total VMT)</td>
<td>4.3%</td>
<td>12.0%</td>
<td>182.3%</td>
</tr>
<tr>
<td></td>
<td>PM2 Roadway Congestion Index</td>
<td>0.92</td>
<td>1.07</td>
<td>16.7%</td>
</tr>
<tr>
<td></td>
<td>PM3 Network Vehicle Hours of Delay (daily)</td>
<td>15,459</td>
<td>28,573</td>
<td>84.8%</td>
</tr>
<tr>
<td></td>
<td>PM4 %Peak Hour Transit Mode Share on Congested Corridors</td>
<td>8.1%</td>
<td>8.5%</td>
<td>4.7%</td>
</tr>
<tr>
<td>Vehicle Miles Traveled<sup>4</sup> and Trip Length</td>
<td>PM5a Internal VMT (No commercial vehicles)</td>
<td>2,971,074</td>
<td>3,698,977</td>
<td>24.5%</td>
</tr>
<tr>
<td></td>
<td>PM5b Internal VMT/capita</td>
<td>11.73</td>
<td>11.69</td>
<td>-0.3%</td>
</tr>
<tr>
<td></td>
<td>-- within the MPO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM5b Eug/Spr Home-Based VMT/Capita only</td>
<td>8.11</td>
<td>8.18</td>
<td>0.9%</td>
</tr>
<tr>
<td></td>
<td>PM5b Coburg Home-Based VMT/Capita only</td>
<td>11.38</td>
<td>11.19</td>
<td>-1.7%</td>
</tr>
<tr>
<td></td>
<td>PM6 Average Trip Length (miles)</td>
<td>3.45</td>
<td>3.45</td>
<td>0.1%</td>
</tr>
<tr>
<td></td>
<td>PM7 % Person Trips under 1 mile</td>
<td>17.4%</td>
<td>18.6%</td>
<td>6.8%</td>
</tr>
<tr>
<td>Mode Shares - All Trips</td>
<td>PM8a Walk</td>
<td>8.5%</td>
<td>8.8%</td>
<td>3.6%</td>
</tr>
<tr>
<td></td>
<td>(all trips originating within the MPO area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM8b Bike</td>
<td>3.6%</td>
<td>3.6%</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>PM8c Transit</td>
<td>2.7%</td>
<td>3.1%</td>
<td>14.4%</td>
</tr>
<tr>
<td></td>
<td>PM8d Shared Ride (2 or more)</td>
<td>41.3%</td>
<td>40.8%</td>
<td>-1.2%</td>
</tr>
<tr>
<td></td>
<td>PM8e Drive Alone</td>
<td>43.9%</td>
<td>43.6%</td>
<td>-0.5%</td>
</tr>
<tr>
<td></td>
<td>PM8f % Non-Auto trips</td>
<td>14.9%</td>
<td>15.6%</td>
<td>4.7%</td>
</tr>
<tr>
<td></td>
<td>PM8g Person Trips per Auto Trip</td>
<td>1.64</td>
<td>1.65</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

¹ Source: 2035 Coordinated Population, Lane Co.; Census 2010

² This is covered employment: number of workers that have unemployment insurance

³ RTP, November 2007. NOTE: significant changes have been made to the travel model since the 2007 RTP; as always, the most valid comparisons are those made between different forecasts using the same model.

⁴ No VMT reduction was asserted for in mixed use centers in the 2035 forecast.
The data presented in this chapter stem from extensive computer modeling analyses of different combinations of land use, Transportation Demand Management, and Transportation System Improvements programs and capital investments. The analysis draws on recent surveys of transportation patterns and behavior in the Eugene-Springfield region. Readers should interpret the data as indicating the magnitude and general direction of change, and should not attach great significance to the apparent precision of the figures.

Traffic Congestion Measures

PM 1: Congested Miles of Travel

This measure represents congested miles of travel as a percentage of total vehicle miles traveled. High levels of congested miles of travel can indicate that the system is not operating efficiently. The evaluation of future plan alternatives shows that, regardless of the strategies employed, congestion will increase significantly over existing conditions. One objective of the planning effort is to minimize the increase in congested miles of travel. Under the 2035 Financially Constrained RTP, congested miles of travel is 12 percent of total miles traveled, an increase of 182 percent over 2010 conditions.

PM 2: Roadway Congestion Index

The Roadway Congestion Index (RCI) is a measure of congestion on the region’s freeways and arterials. This measure is based on a method developed to estimate relative regional congestion for urbanized areas in the U.S. It is a measure of the regional system of freeways and arterials that does not account for specific bottlenecks. An index value greater than 1 indicates generally congested conditions area-wide. A value less than 1 means that, while congestion may occur during certain periods on specific facilities, on average, the freeways and arterials are relatively uncongested. The objective is to avoid area-wide congestion represented by values of 1 or greater. A lower index value relative to the trend indicates that the plan will have a positive impact on managing congestion. The 2035 Financially Constrained RTP RCI of 1.07 is more than 1 and thus indicates congestion will occur area-wide.

PM 3: Daily Vehicle Hours of Delay

Daily vehicle hours of delay provides another measure of the level of congestion. Very similar to congested miles of travel, it is expected to increase significantly in the future. Daily Vehicle Hours of Delay is expected to increase by 85 percent over 2010 conditions.

PM 4: % Transit Mode share on Congested Corridors

The % Transit Mode Share on Congested corridors is the ratio of transit person trips to total person trips on congested facilities during the PM peak hour. An increase in this measure is a direct indication of reduced reliance on the automobile. Transit mode share on the congested corridors is expected to increase by 4.7 percent over the 2010 base.
Vehicle Miles Traveled and Trip Length Measures

PM 5: Daily Vehicle Miles of Travel (VMT) Per Capita

PM 5a is a measure of the total daily VMT by trips made within the metropolitan area by area residents (internal trips) and PM 5b presents VMT divided by the region’s population. Under the 2035 Financially Constrained RTP, VMT per capita decreases slightly.

PM 6 and PM 7: Average Trip Length and Percentage of Person Trips Under 1 Mile

Shorter trip distance is one factor that contributes to making the use of alternative modes more attractive. As presented in Table 8, trip length reflects the average distance for trips taken within the region by all modes and does not include trips made through the region. The objective is to reduce average trip length. Percentage of person trips under 1 mile provides a measure of the plan’s specific impact on short trips. The objective here is to increase the percentage of trips under 1 mile.

Average trip length is projected to remain essentially unchanged under the 2035 Financially Constrained RTP.

The percentage of trips under 1 mile is expected to increase to 18.6 percent. This reflects the impact of the plan’s proposed nodal development strategy.

Mode Choice Measures

PM 8: Mode Shares (All Trips)

This measure shows the relative share of the region’s trips taken by each mode of transportation. The objective is to reduce drive-alone auto trips while increasing the number of trips taken by other modes. Measures PM 8a through PM 8e indicate the relative percentage share for walk, bike, bus, shared-ride auto, and drive-alone auto trips. The most significant changes are the 14.4 percent increase in transit mode share and the 3.6 percent increase in walk trips. As shown in PM 8f, there is a 4.7 percent overall increase in the use of alternative modes under the 2035 Financially Constrained RTP.

PM 8f is the sum of all non-auto (walk, bike, and bus) trips. Model analysis indicates that non-auto mode shares increase by about 4.7 percent under the 2035 Financially Constrained RTP. PM 8g provides an aggregate estimate of the region’s reliance on the auto. Total person trips taken in the region are divided by the total number of auto trips. The objective is to increase the overall number of person trips taken relative to total auto trips. Model results suggest that person trips per auto trip will increase slightly by 2035.
Summary Assessment
This section provides an overall assessment of the plan’s performance.

Over the past 25 years, growth in the Eugene/Springfield urban growth boundary (UGB) has been fairly compact. This is in part due to the limitations put on partitioning of parcels outside of city limits and allowing development to occur only with the extension of public facilities. Thus, infill and redevelopment have been taking place over time and, as a result, a large portion of future development will occur within the UGB on the edges of existing development. As demonstrated above, growth on the edges leads to longer overall trip lengths, which in turn makes non-auto modes less attractive. This makes it difficult to achieve VMT reductions within the planning period.

Investments in non-auto modes (particularly BRT) and implementation of nodal development strategies lead to improved choices available for travel and contribute to increased levels of non-auto mode share of all trips over existing conditions (increase from 14.9 percent to 15.6 percent). Increases in the percentage of roadway miles with sidewalks and a significant increase in the number of bikeway miles are also planned by 2035. As noted above, investments in alternative modes increase their convenience and practicality. This improves the transportation choices available to the region's residents.

Financial constraint limits the resources available to make improvements to the roadway system. This is the primary explanation for the increase in the region’s congestion levels. Limited expansion of the roadway system is also a contributing factor to the reductions in the drive alone mode share. The increases in the region’s congestion levels have the general effect of making the auto mode less attractive. However, congestion, in and of itself, is not a major determinant in shifts to alternative modes. Congestion increases in much higher proportion than the shifts to alternative modes. The primary factor contributing to the increase in use of alternative modes are the investments made directly in each alternative mode.

Continued development of the region's TDM program provides incentives that also make use of alternative modes more attractive. TDM also provides a low-cost means of helping to address transportation demand in specific areas surrounding congested facilities.

Overall, the performance measures presented in this chapter clearly point to a reduced reliance on the automobile. A longer timeframe than the planning period is required to accomplish the full benefits of several aspects of the proposed plan. Nodal development may take 30 to 40 years before its full benefits are realized in the region. BRT will be implemented incrementally over the planning period and will require additional time for its full benefits to be realized. It is important to pursue the balanced set of strategies in the proposed plan to set the stage for future benefits.
Part Three: Congestion Management Process

Federal regulations require urbanized areas with over 200,000 populations to develop and maintain a Congestion Management Process. A Congestion Management Process, or CMP, is a systematic approach to considering congestion in the long-term planning for a regional transportation system.

The Central Lane MPO’s full Congestion Management Process is documented in Appendix G. The following provides context and background for the CMP.

A CMP provides a structure and a process for:

- evaluating the performance of the region’s transportation system,
- implementing a wide range of strategies to address congestion, and
- monitoring results over time to improve long-term performance.

A Congestion Management System (CMS) Baseline Report was developed in September 2004 and represents the region’s initial product within the overall CMP. The purpose of a Congestion Management Process is to provide a framework for addressing congestion on the regional transportation system. While in some cases congestion may be eliminated or significantly reduced, a more realistic goal is to improve the way we manage congestion, now and in the future. A CMP is meant to aid in better understanding where the worst congestion is located and what the best mix of strategies is likely to be for each situation.

The 2004 Baseline CMS report is structured around three main concepts:

- Build on existing plans and capabilities: the CMS makes use of the adopted Regional Transportation Plan, the regional traffic forecasting model, and existing performance measures to define the level of congestion on the system and evaluate alternative congestion management strategies.

- Focus on major corridors, and a range of strategies: the CMS identifies major congested corridors and a preliminary set of strategies for each congested corridor. The strategies include both short range and longer term actions, and a wide array of options including operations, TDM, access management, land use measures, and adding new capacity.

- Improve the techniques for obtaining and analyzing information: the CMS incorporates a process for monitoring and evaluating transportation system performance on a more systematic basis. Future efforts will need to focus on improved data collection and analysis, better modeling tools, and ongoing coordination among individual agencies that operate different pieces of the overall system.

The CMS collects and organizes various pieces of the RTP that are related to congestion—in effect, providing a view of the RTP through a “congestion filter” to better define the different components and their connections with one another.
Congestion Management Corridors

Using the most up-to-date inputs for land use allocation and network assumptions, the model was used to simulate traffic flow on the major roadway network and compare each roadway section with the level of service or volume-to-capacity measures discussed earlier. Based on a review of this information, nine roadways have been identified as congestion management corridors for the initial CMS:

1. Interstate 5, from OR 58 interchange at Goshen to north boundary of the TMA at Coburg
2. OR 126/I-105, from Garfield Street in Eugene to Main Street/McKenzie Highway in Springfield
 a. 6th-7th couplet from Garfield to Jefferson
 b. Washington-Jefferson Bridge (I-105) from 7th to Delta Highway
 c. I-105 from Delta Highway to Interstate 5
 d. Eugene-Springfield Highway from I-5 to Main Street/McKenzie Highway
3. Beltline Highway, from Highway 99 to Interstate 5
4. Main Street/McKenzie Highway, from Mill Street (downtown Springfield) to 70th Street
5. Broadway/Franklin Boulevard, from Mill St. (Eugene) to Springfield Bridge
 a. Broadway from Mill St. to Alder St.
 b. Franklin Blvd. from Alder St. to I-5
 c. Franklin Blvd. from I-5 to Springfield Bridge
6. West 11th Avenue, from Terry Street to Chambers Street
7. Ferry Street Bridge/Coburg Road, from Broadway to Crescent Avenue
8. Southeast Eugene corridor (Hilyard-Patterson-Am. Pkwy-Willamette) from 13th to 33rd Ave.
9. 18th Avenue, from Bertelsen Road to Agate Street

While the MPO is still in the process of developing a complete Congestion Management Process, this update of the RTP shows updated current and projected area-wide congestion performance measures in Table 10. (The initial model output for the corridors shown in Table 9, Corridor Descriptions and Estimated 2004 and Forecasted 2031 Daily Traffic, has not yet been updated for this 2031 RTP.)

Table 9 is a shorter version of a more comprehensive set of model output in the full 2004 CMS report. The primary indicator of congestion is the Weighted PM Peak Average V/C Ratio for each corridor or segment of a corridor, shown for both the base year of 2002 and the horizon year of 2021. (The volume-to-capacity ratio for the corridor is calculated by weighting the different sections within the corridor by vehicle-miles of travel.) Along with this overall V/C figure for each corridor, the Maximum PM Peak V/C Ratio is also important. In some cases the maximum congestion level occurs at only one or two intersections along the corridor, while in other cases
the model shows very high congestion over a long section of corridor—for example, Beltline from Delta to River Road.

The full 2004 CMS report discusses a set of strategies for addressing congestion within each corridor, including land use strategies; transportation demand management (TDM); intelligent transportation system (ITS) techniques and operational tools; roadway projects to add capacity; transit strategies; and bicycle/pedestrian strategies. For each corridor, the list includes projects and actions from the adopted TransPlan as well as additional work being done in ongoing efforts, such as the ITS plan for the area.

Congestion on the Major Roadway Network

In addition to specific corridors, the CMS also serves the purpose of monitoring congestion on the overall network of major roadways. For the 2031 RTP update, the regional travel model was run to produce updated values for four of the Key Performance Measures: congested miles of travel, roadway congestion index, network vehicle hours of delay, and percent transit mode share on congested corridors. Table 10, *Area-Wide Performance Measures*, shows the model output for each of these four measures, for the base year at the time of 2004 and the RTP plan horizon year at the time of 2031.

PM 1: Congested Miles of Travel (per cent of total VMT) — The model forecasted a five-fold increase in congested miles of travel on the major roadway network, assuming construction of the financially-constrained roadway projects in the RTP. The 2031 forecast of 21.3 percent of daily VMT as congested is still relatively small, but represents major congestion at a number of key locations on the roadway system.

PM 2: Roadway Congestion Index (RCI) — The model forecasted an increase in the RCI from 0.92 in the 2004 base year to 1.26 in 2031. This measure defines any value over 1.0 as “congested.” The RCI is useful for comparing relative congestion over time, as well as providing a quick comparison of our TMA’s congestion level with that of other urban areas.

PM 3: Network Vehicle Hours of Delay (VHD) — On a daily basis, the model forecasted the hours of delay due to congestion in 2031 will be about two and a half to three times the 2004 level.

PM 4: Percent Transit Mode Share on Congested Corridors — Unlike the other three measures, higher values for this measure are desirable. The overall share of travel by transit on the congested corridors is forecasted to increase from 7.1 percent to 8.6 percent over the 24-year period. Some corridors will experience significantly more of an increase in transit ridership, based on planned implementation of BRT service.

The values in Table 10 can be viewed as a set of baseline measures of congestion on the overall roadway network in the Central Lane TMA. Over time, as the CMP corridor strategies are applied and better modeling tools are developed, one of the ongoing purposes of the CMP will be to provide a central framework for monitoring congestion on the region’s major roadways. This
should help technical staff, policy makers and the general public gain a better understanding of where and how congestion is occurring and how best to manage it, throughout the Central Lane TMA.
Table 9
Corridor Descriptions and Estimated* 2002 and Forecasted 2021 Daily Traffic

<table>
<thead>
<tr>
<th>Corridor</th>
<th>S/W Limit</th>
<th>N/E Limit</th>
<th>Approximate Length (mi)</th>
<th>Direction</th>
<th>2002 Weighted PM Peak Avg V/C Ratio</th>
<th>2002 Maximum PM Peak V/C Ratio (Peak Dir)</th>
<th>2021 Weighted PM Peak Avg V/C Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstate 5</td>
<td>Highway 58 Interchange</td>
<td>North Boundary of TMA</td>
<td>13.1</td>
<td>Northbound</td>
<td>0.71</td>
<td>0.98</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Southbound</td>
<td>0.71</td>
<td></td>
<td>0.90</td>
</tr>
<tr>
<td>Oregon Hwy 126 Corridor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th - 7th Couplet</td>
<td>Garfield Street</td>
<td>Jefferson Street</td>
<td>1.1</td>
<td>Eastbound</td>
<td>0.76</td>
<td>0.92</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Westbound</td>
<td>0.72</td>
<td></td>
<td>0.95</td>
</tr>
<tr>
<td>Washington-Jefferson Bridge</td>
<td>7th Ave</td>
<td>Delta Highway</td>
<td>1.0</td>
<td>Northbound</td>
<td>0.91</td>
<td>1.09</td>
<td>1.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Southbound</td>
<td>0.75</td>
<td></td>
<td>0.94</td>
</tr>
<tr>
<td>Interstate 105</td>
<td>Delta Highway</td>
<td>Interstate 5 Interchange</td>
<td>2.6</td>
<td>Eastbound</td>
<td>0.82</td>
<td>1.22</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Westbound</td>
<td>0.60</td>
<td></td>
<td>0.76</td>
</tr>
<tr>
<td>Eugene-Springfield Highway</td>
<td>Interstate 5 Interchange</td>
<td>Main Street / 58th</td>
<td>6.4</td>
<td>Eastbound</td>
<td>0.73</td>
<td>0.88</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Westbound</td>
<td>0.49</td>
<td></td>
<td>0.66</td>
</tr>
<tr>
<td>Beltline Highway</td>
<td>Highway 99 Interchange</td>
<td>Interstate 5 Interchange</td>
<td>6.3</td>
<td>Northbound</td>
<td>0.82</td>
<td>1.16</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Southbound</td>
<td>0.80</td>
<td></td>
<td>0.96</td>
</tr>
<tr>
<td>McKenzie Highway (Main/SA St)</td>
<td>Mill Street (Springfield)</td>
<td>70th Street</td>
<td>6.1</td>
<td>Eastbound</td>
<td>0.65</td>
<td>0.94</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Westbound</td>
<td>0.48</td>
<td></td>
<td>0.67</td>
</tr>
<tr>
<td>Broadway / Franklin Corridor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broadway</td>
<td>Mill Street (Eugene)</td>
<td>Alder Street</td>
<td>0.3</td>
<td>Eastbound</td>
<td>0.66</td>
<td>0.78</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Westbound</td>
<td>0.64</td>
<td></td>
<td>0.87</td>
</tr>
<tr>
<td>Franklin Boulevard (Eugene)</td>
<td>Alder Street</td>
<td>Interstate 5 Interchange</td>
<td>1.3</td>
<td>Eastbound</td>
<td>0.62</td>
<td>0.71</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Westbound</td>
<td>0.42</td>
<td></td>
<td>0.65</td>
</tr>
<tr>
<td>Franklin Boulevard (Glenwood)</td>
<td>Interstate 5 Interchange</td>
<td>Springfield Bridges</td>
<td>1.6</td>
<td>Eastbound</td>
<td>0.59</td>
<td>0.81</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Westbound</td>
<td>0.33</td>
<td></td>
<td>0.49</td>
</tr>
<tr>
<td>West 11th Avenue</td>
<td>Terry Street</td>
<td>Chambers Street</td>
<td>3.4</td>
<td>Eastbound</td>
<td>0.72</td>
<td>1.00</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Westbound</td>
<td>0.72</td>
<td></td>
<td>0.71</td>
</tr>
<tr>
<td>Ferry St Bridge / Coburg Rd</td>
<td>Broadway</td>
<td>Crescent Avenue</td>
<td>3.3</td>
<td>Northbound</td>
<td>0.88</td>
<td>1.3+</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Southbound</td>
<td>0.76</td>
<td></td>
<td>0.90</td>
</tr>
<tr>
<td>Southeast Eugene Corridor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Willamette / Oak</td>
<td>33rd Ave</td>
<td>13th Street</td>
<td>1.7</td>
<td>Northbound</td>
<td>0.62</td>
<td>1.02</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Southbound</td>
<td>0.74</td>
<td></td>
<td>0.80</td>
</tr>
<tr>
<td>Pearl / High / Amazon</td>
<td>33rd Ave</td>
<td>14th Street</td>
<td>1.7</td>
<td>Northbound</td>
<td>0.38</td>
<td>0.93</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Southbound</td>
<td>0.61</td>
<td></td>
<td>0.71</td>
</tr>
<tr>
<td>Patterson / Hilyard</td>
<td>33rd Ave</td>
<td>15th Street</td>
<td>1.7</td>
<td>Northbound</td>
<td>0.51</td>
<td>0.77</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Southbound</td>
<td>0.71</td>
<td></td>
<td>0.85</td>
</tr>
<tr>
<td>18th Avenue</td>
<td>Bertelsen Road</td>
<td>Agate Street</td>
<td>4.6</td>
<td>Eastbound</td>
<td>0.67</td>
<td>1.01</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Westbound</td>
<td>0.72</td>
<td></td>
<td>0.80</td>
</tr>
</tbody>
</table>

*Based on Adjusted EMME/2 Model Results
Table 10

Area-Wide Performance Measures

<table>
<thead>
<tr>
<th></th>
<th>2004</th>
<th>2031</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM 1: Congested Miles of Travel (Percent of Weekday VMT)</td>
<td>4.1%</td>
<td>21.3%</td>
</tr>
<tr>
<td>PM 2: Roadway Congestion Index (RCI)</td>
<td>0.92</td>
<td>1.26</td>
</tr>
<tr>
<td>PM 3: Network Vehicle Hours of Delay (VHD)</td>
<td>14,140</td>
<td>40,460</td>
</tr>
<tr>
<td>PM 4: Peak Hour Transit Mode Shares on Congested Corridors</td>
<td>7.1%</td>
<td>8.6%</td>
</tr>
<tr>
<td>McKenzie Hwy</td>
<td>6.9%</td>
<td>9.2%</td>
</tr>
<tr>
<td>Broadway / Franklin</td>
<td>9.4%</td>
<td>16.7%</td>
</tr>
<tr>
<td>W. 11th Ave</td>
<td>4.1%</td>
<td>4.9%</td>
</tr>
<tr>
<td>Ferry St Bridge / Coburg Rd</td>
<td>9.3%</td>
<td>8.7%</td>
</tr>
<tr>
<td>Southeast Eugene</td>
<td>7.5%</td>
<td>9.0%</td>
</tr>
<tr>
<td>18th Ave</td>
<td>5.1%</td>
<td>5.5%</td>
</tr>
</tbody>
</table>

Table 2 Notes:

- **PM1:** % of Weekday VMT at v/c = .87 or greater
- **PM2:** Calculated on Freeways and Principal Arterials, per TTI Urban Mobility Study methodology
- **PM3:** Vehicle Hours difference between congested speed and posted speed
- **PM4:** EMME/2 Model Estimates: Percent Transit Person-Miles-Traveled (PMT) of total PMT in corridor segments where transit service is available
Part Four: Plan Implementation Monitoring

Plan implementation monitoring is an ongoing program of data collection and analyses for providing feedback to policy makers and the public on the progress of the policies and actions in the RTP. Monitoring allows local jurisdictions to assess how well the plan is performing and complying with federal and state requirements and to determine when steps need to be taken to keep the plan on course. Monitoring examines the effectiveness of policy implementation efforts through the collection and analysis of data for various performance measures. LCOG will coordinate the plan implementation monitoring program in cooperation with implementing agencies.

Plan Monitoring Process

The ongoing plan monitoring process includes the following components:

1. Review of trends, assumptions, and new opportunities;
2. Inventory of actions taken to implement RTP policies;
3. Analysis of transportation system performance using the performance measures presented above; and
4. Recommended actions and corrective steps, including potential plan amendments during the next update cycle.

The second component of the plan monitoring process involves tracking how local jurisdictions and regional and state agencies are applying RTP policies. Implementation of Planning and Program Actions and Capital Investment Actions from Chapter 3 will be summarized.

The third component of the plan monitoring process involves collecting data to assess transportation system performance in relation to the performance measures. This analysis will provide a comprehensive view of how the transportation system as a whole is performing. The analysis will indicate when additional actions need to be taken. The need may become apparent to identify different performance measures.

The fourth component of the plan monitoring process involves identifying actions and making recommendations as to how the plan can be implemented most effectively. In many cases, these actions will involve increased or decreased emphasis on existing policies and implementation actions. In other cases, plan monitoring will indicate that new or modified policies and implementation actions are necessary. Modifications to the plan will most often be made during the regular plan update process, occurring every three years. Should modifications need to be made to the plan between updates, the plan amendment process will be used. The RTP amendment and update processes are described in Chapter 3 Part Three Regional Transportation Plan Amendment Process.